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ABSTRACT Protein crystallization is a major
bottleneck in protein X-ray crystallography, the
workhorse of most structural proteomics projects.
Because the principles that govern protein crystalli-
zation are too poorly understood to allow them to be
used in a strongly predictive sense, the most com-
mon crystallization strategy entails screening a wide
variety of solution conditions to identify the small
subset that will support crystal nucleation and
growth. We tested the hypothesis that more efficient
crystallization strategies could be formulated by
extracting useful patterns and correlations from the
large data sets of crystallization trials created in
structural proteomics projects. A database of crystal-
lization conditions was constructed for 755 differ-
ent proteins purified and crystallized under uni-
form conditions. Forty-five percent of the proteins
formed crystals. Data mining identified the condi-
tions that crystallize the most proteins, revealed
that many conditions are highly correlated in their
behavior, and showed that the crystallization suc-
cess rate is markedly dependent on the organism
from which proteins derive. Of the proteins that
crystallized in a 48-condition experiment, 60% could
be crystallized in as few as 6 conditions and 94% in
24 conditions. Consideration of the full range of
information coming from crystal screening trials
allows one to design screens that are maximally
productive while consuming minimal resources, and
also suggests further useful conditions for extend-
ing existing screens. Proteins 2003;51:562–568.
© 2003 Wiley-Liss, Inc.
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INTRODUCTION

The ultimate goal of structural proteomics is to obtain,
through experimental or computational methods, 3D struc-
tural models for every protein in nature. Driving this
ambitious program is the expectation that structural
information will provide functional insights for many of
the proteins predicted by genome-sequencing efforts that
cannot be ascribed a function using current sequence
homology-based approaches. The challenges in structural

proteomics are significant; it has been estimated that some
16,000 structures will have to be determined using experi-
mental approaches to obtain reasonable coverage of fold
space.1 Recent advances in X-ray crystallography method-
ology and associated technologies have made it possible, at
least in ideal cases, to go from data collection to a refined
structure in a matter of hours2–6; however, actually grow-
ing a diffraction-quality crystal is far more time and
resource intensive.

The purpose of protein crystallization trials is to effi-
ciently find useful lead conditions from which crystal size
and morphology can be optimized. Commonly, one ex-
plores a wide range of different solutions in which the salt
concentration and type, pH, additive type, temperature,
and precipitant type and concentration are varied. The
precipitant is usually a long-chain polymer [poly-ethylene
glycol (PEG), jeffamine], an inorganic or organic salt, or
some small organic molecule (MPD, isopropanol, etha-
nol).2

There are two general approaches to the design of
crystallization screens. One strategy aims to blanket poten-
tially useful crystallization space with screens of a few
hundreds to over a thousand conditions (see, e.g., the
JBScreen at www.jenabioscience.com/jbscreen.html). The
other strategy is to use smaller, more efficient screens
based on previously successful conditions.3–8 The most
widely used variant of this second strategy, developed by
Jancarik and Kim, is based on an incomplete factorial
approach, which explores a range of conditions biased
toward previously successful crystallization conditions.8

The popularity of this screening strategy can be ascribed to
many reasons, including its economy (1–2 mg of protein
are needed), ease of use, manageable size, and convenience
(it is sold in preformulated kit form by various companies).
As originally formulated, this screen was intended to be
modified reiteratively as the experiences of users were
incorporated.3 In practice, however, this has not hap-
pened. Partly this is due to a lack of a clear metric by which
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to decide which of a set of potential screening conditions is
better, but also, more fundamentally, a lack of sufficient,
standardized experimental data by which to evaluate a
screen. While the optimal conditions for crystallizing a
particular protein crystal form are often collected and
archived in a database,9 the detailed results of each
screen, including partial successes or failures, are not. As a
result, while individual crystallization conditions can per-
haps be shown to be more or less successful, researchers
have tended to supplement the common factorial screens
with additional screens rather than attempting to system-
atically optimize any given one. This may be a reasonable
strategy when trying to crystallize one or two proteins, in
which the effort and expense involved in making the
additional protein, setting up the screen, and evaluating
the results is manageable. However, in the context of
structural proteomics this extra effort and expense is
multiplied over hundreds or even thousands of proteins,
and thus the desirability of screens that minimize the
number of experiments while maximizing the probability
of success becomes far more pronounced. Here, by collating
data collected for 755 proteins from 6 organisms we show
that it is possible to use the information gleaned from
previous screens to improve screening strategies using
objective empirical criteria.

METHODS

Proteins predicted not to have membrane-spanning
domains from six organisms—the prokaryotes Staphylococ-
cus aureus, Escherichia coli K12, Pseudomonas aerugi-
nosa, Heliobacter pylori, and Thermotoga maritima and
the archaeote Methanobacterium thermoautotrophicum—
were amplified by PCR, cloned into E. coli expression
vectors, overexpressed, and purified using His6 technol-
ogy, as described elsewhere (see [10] for a general overview
and [11, 12] for typical examples of procedures). Proteins
were typically stored at 4°C, in 20 mM HEPES, pH 7.5,
and 500 mM NaCl. The solutions for the initial screen were
purchased from Hampton Research. Proteins were screened
in 24-well Lindbro plates, using a 2-�l � 2-�l drop size and
700 �l in the well. For some proteins both the his-tagged
and non-his-tagged sample were both screened, and these
were scored as separate samples. Samples also included
separate domains of multidomain proteins. For most
samples, two to four protein concentrations, typically

ranging from 5–40 mg ml�1, were screened in parallel; in
almost all cases this included at least one experiment in
the 10- to 15-mg/ml range. The data for these multiple
experiments were pooled. All crystallization experiments
were performed at ambient temperature (approximately
293 K). In total, over 35,000 experiments were performed.

Screening results were scored by eye after approxi-
mately 1 day, 1 week, 1 month, and 3 months. For proteins
where screening multiple samples at different protein
concentrations yielded different outcomes, only the most
favorable outcome was scored and reported. To minimize
subjectivity in scoring, results for each experiment were
reduced to one of three assessments—clear, precipitate, or
crystalline. Samples were required to have at least two
conditions in which they are soluble and two where they
are not and no more than five conditions for which data
was missing (if, e.g., the condition was not set or the drop
dried out before it could be scored). These criteria reject 6
E. coli proteins, 3 T. martima proteins, 6 M. thermoautotro-
phicum proteins, and 55 S. aureus proteins. Minimal
screen 6 was derived by sequentially searching all combi-
nations of conditions (48!/6! 42! � 1.2 � 107 combinations)
for the one that crystallized the most proteins. Minimal
screen 12 was derived by using minimal screen 6 as a seed
and searching all combinations of the remaining condi-
tions for the six that best complemented minimal screen 6.
Minimal screen 24 was found by repeating this condition
twice more. Although this procedure is not guaranteed to
find the globally optimal subsets, this limitation is likely
far less serious than the one imposed by the limited
amount of data available. Clustering was performed in
ClustalX using pairwise identity scores once screening
results had been “encoded” as amino acid sequences.13

Cladogram was produced in Phylodraw.14

RESULTS AND DISCUSSION

A total of 755 protein samples from T. maritima, E. coli,
M. thermoautotrophicum, S. aureus, P. aeruginosa, and H.
pylori were screened against conditions 1–48 of the Jan-
carik and Kim screen. The success rates for different
genomes (Table I) ranged from 67.6% (for T. maritima,
albeit with the smallest sample size) to 36.7% in the case of
H. pylori. The differences may reflect differences in the
intrinsic properties of proteins from different organisms,
perhaps influenced by the intracellular environment of the

TABLE I. Breakdown of Results by Source Organism

Organism
Number of proteins

screened
Number of proteins

crystallized
Mean hits per protein

crystallizeda
%

success

S. aureus 372 142 4.2 38.2
H. pylori 128 47 6.4 36.7
E. coli 116 72 4.8 62.1
M. thermoautotrophicum 95 41 4.8 43.2
Th. maritima 34 23 3.5 67.6
P. aeruginosa 21 13 6.0 61.9
Overall 755 338 4.7 44.7
aThe average number of conditions under which crystals were obtained, considering only those samples for which at least
one crystal was obtained.
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natural host, or may simply reflect the quality of the
protein produced by the E. coli host. Overall, 338 protein
samples (45%) yielded at least 1 crystallization lead. For
each protein that crystallized, crystals were observed, on
average, in 4.7/48 conditions.

There were large differences in the number of proteins
that crystallized in each condition (Table II), ranging from
76 for condition 9 to 4 for condition 27. Surprisingly, for 99
of the 338 proteins crystallized (29.3%) crystals were
obtained in only one condition; this is approximately

TABLE II. Overview of Results Produced by the Jancarik and Kim Screen†

Jancarik–Kim no. Components of screening condition pHa
Total
clear

Total
precipitate

Total
crystals

Only
crystalb

1 30% MPD Na Acetate pH 4.6 0.02 M CaCl2 5.06 197 540 17 1
2 0.4 M K,Na Tartrate 7.27 609 138 8 0
3 0.4 M NH4 Phosphate 4.24 264 450 12 0
4 2.0 M NH4 Sulfate Tris.HCl pH 8.5 8.31 208 494 50 3
5 30% MPD Na Hepes pH 7.5 0.2 M Na Citrate 7.44 346 396 11 0
6 30% PEG 4000 Tris.HCl pH 8.5 0.2 M MgCl2 8.70 84 601 65 4
7 1.4 M Na Acetate Na Cacodylate pH 6.5 6.83 513 211 27 0
8 30% Isopropanol Na Cacodylate pH 6.5 0.2 M Na

Citrate
7.06 201 544 9 1

9 30% PEG 4000 Na Citrate pH 5.6 0.2 M NH4 Acetate 6.54 108 568 76 1
10 30% PEG 4000 Na Acetate pH 4.6 0.2 M NH4 Acetate 5.82 70 632 49 4
11 1.0 M NH4 Phosphate Na Citrate pH 5.6 4.89 309 404 15 0
12 30% Isopropanol Na Hepes pH 7.5 0.2 M MgCl2 7.29 177 560 16 1
13 30% PEG 400 Tris.HCl pH 8.5 0.2 M Na Citrate 8.84 551 193 10 2
14 28% PEG 400 Na Hepes pH 7.5 0.2 M CaCl2 7.32 212 517 25 2
15 30% PEG 8000 Na Cacodylate pH 6.5 0.2 M NH4

Sulfate
6.68 123 568 60 1

16 1.5 M Li Sulfate Na Hepes pH 7.5 7.68 437 288 30 1
17 30% PEG 4000 Tris.HCl pH 8.5 0.2 M Li Sulfate 8.96 134 544 70 3
18 20% PEG 8000 Na Cacodylate pH 6.5 0.2 M Mg Acetate 6.62 137 546 72 1
19 30% Isopropanol Tris.HCl pH 8.5 0.2 M NH4 Acetate 8.37 218 525 7 0
20 25% PEG 4000 Na Acetate pH 4.6 0.2 M NH4 Sulfate 4.95 56 658 37 1
21 30% MPD Na Cacodylate pH 6.5 0.2 M Mg Acetate 6.71 265 468 19 3
22 30% PEG 4000 Tris.HCl pH 8.5 0.2 M Na Acetate 8.96 95 590 65 2
23 30% PEG 400 Na Hepes pH 7.5 0.2 M MgCl2 7.28 276 454 25 1
24 20% Isopropanol Na Acetate pH 4.6 0.2 M CaCl2 4.64 159 584 11 0
25 1.0 M Na Acetate, Imidazole pH 6.5 7.90 566 166 18 1
26 30% MPD Na Citrate pH 5.6 0.2 M NH4 Acetate 6.50 235 509 7 1
27 20% Isopropanol Na Hepes pH 7.5 0.2 M Na Citrate 7.48 280 470 4 2
28 30% PEG 8000 Na Cacodylate pH 6.5 0.2 M Na Acetate 6.89 87 602 65 2
29 1.6 M K,Na Tartrate Na Hepes pH 7.5 7.67 554 180 16 0
30 30% PEG 8000 0.2 M NH4 Sulfate 3.84 39 676 38 3
31 30% PEG 4000 0.2 M NH4 Sulfate 3.78 147 572 35 0
32 2.0 M NH4 Sulfate 5.01 201 517 36 2
33 4.0 M Na Formate 7.68 328 387 36 3
34 2.0 M Na Formate Na Acetate pH 4.6 5.48 274 444 34 2
35 1.6 M K,Na Phosphate Na Hepes pH 7.5 4.52 241 445 15 2
36 8% PEG 8000 Tris.HCl pH 8.5 8.61 371 359 22 5
37 8% PEG 4000 Na Acetate pH 4.6 4.85 192 536 24 1
38 1.4 M Na Citrate Na Hepes pH 7.5 7.95 90 597 62 11
39 2.0 M NH4 Sulfate Na Hepes pH 7.5 2% PEG 400 7.67 198 492 63 6
40 20% Isopropanol � 20% PEG 4000 Na Citrate pH 5.6 6.59 157 565 30 0
41 10% Isopropanol � 20% PEG 4000 Na Hepes pH 7.5 7.46 134 560 58 6
42 20% PEG 8000 0.05 M K Phosphate 4.62 89 586 52 3
43 30% PEG 1500 5.36 101 594 54 7
44 0.2 M Mg Formate 6.86 473 253 26 1
45 18% PEG 8000 Na Cacodylate pH 6.5 0.2 M Zn Acetate 5.85 160 572 19 5
46 18% PEG 8000 Na Cacodylate pH 6.5 0.2 M Ca Acetate 6.50 120 570 57 2
47 2.0 M NH4 Sulfate Na Acetate pH 4.6 4.64 100 619 30 1
48 2.0 M NH4 Phosphate Tris.HCl pH 8.5 4.25 216 461 14 1
Totals 11,102 23,205 1601 99
†Buffers when present were at 0.1 M.
apH is experimentally measured pH, performed in duplicate on two different batches of the screen.
bNumber of proteins for which this condition yielded the only crystal lead.
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10-fold higher than might be expected if crystallization in
different conditions were behaving as independent ran-
dom variables (48 � 0.1 � 0.947 � 3.4%).

Efficacy of Different Precipitants

In 17 of the 48 conditions, salt was the major precipitant.
These conditions together crystallized a total of 200 of the
338 proteins (59.2%) [Fig. 1(a)]. There were significant
differences in the effectiveness of different salts. Sodium
citrate, for example, is represented by a single condition in
the screen, 39, but was the eighth most productive condi-

Fig. 2. (a) Subset of the overall data, representing the 338 proteins
successfully crystallized. Different conditions are arrayed vertically and
different proteins horizontally. Yellow squares represent crystals, dark
blue squares represent precipitated proteins, and cyan squares represent
soluble proteins. Proteins and conditions were sequentially clustered
using ClustalX using identity matrices for scoring. (b) Distance matrix of
clustered conditions. Condition numbers are noted along the diagonal;
off-diagonal elements represent the number of instances in which pro-
teins were found to crystallize in both the condition to the right and the one
above it. Note the strong correlation between the PEG conditions (bottom
right corner) as well as the citrate/sulphate/formate salts (top left corner).
The scale is logarithmic. On the left is a “Cladogram” showing the degree
of relatedness of crystal screen conditions as inferred from the degree to
which they crystallize the same protein samples. Note that the crystalliza-
tion conditions cluster primarily on the basis of the chemical nature of the
major precipitant and secondarily on the basis of pH.

Fig. 1. (a) Venn diagram showing the number of proteins for which
crystals were obtained in conditions where salt (17 screening conditions,
red), PEG (22 conditions, blue), or an organic molecule (9 conditions,
green) was the major precipitant. (b) Number of proteins with a given
number of successful screening conditions. While some exceptional
samples crystallize in up to two-thirds of all conditions, most proteins
crystallize in relatively few conditions. (c) Number of crystals contained for
a given number of selected screening conditions. Conditions were added
one at a time, where the condition added was the one that most increased
the number of crystals obtained relative to the previously chosen subset.
Note that almost all of the crystals obtained can be obtained from
approximately half of the screening conditions and that the last nine
conditions could be omitted without affecting the number of samples
crystallized.
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tion in the screen. Moreover, this condition was by far the
most likely condition to yield the only crystal for a given
protein. This unusual behavior may be related to citrate’s
strong metal chelating abilities, something that suggests
further investigation.2 Ammonium sulphate, long consid-
ered an exceptionally good salt for crystallizing proteins,
was the major precipitant in four conditions (4, 32, 39, and
47), all of which yield substantial numbers (50, 36, 63, and
30) of crystals. Lithium sulphate (16) and formate salts
(33, 34, and 44) were also successful. Citrate, sulphate,
and formate salts formed a cluster that affected protein
solubility in a similar fashion; they tended to crystallize
the same subset of proteins (Fig. 2). The other salts used,
namely, phosphate (3, 11, 35, and 48), acetate (7 and 25),
and tartrate (2 and 29), were much less successful precipi-
tants; in the case of phosphate, this likely reflected the fact
that all of these conditions are acidic. Only 69 proteins
crystallized in these 8 conditions.

High-molecular-weight PEGs are widely considered the
most successful protein crystallization agents.2,9 Of the
338 total proteins, 229 crystallized (67.7%) in the 14
conditions that consist of PEG 4000 or 8000 at concentra-
tions greater than 18%, possibly with some buffer and
inert salt (excluding condition 45, which contains zinc), for
an average of 54 crystals per condition. The six most
productive conditions overall were all in this group. How-
ever, there was, in general, a great deal of redundancy
among the PEG conditions [Fig. 2(b)]. This region of
parameter space appears to be heavily oversampled, a
consequence of strong bias toward previously successful
experiments built into the original design of the screen.
Low concentrations of PEG (36, 37) appeared to be less
effective at obtaining crystals but crystallized a different
set of proteins than those obtained at higher concentra-
tions. PEG 400 (13, 14, and 23) appeared to affect the
solubility of proteins in a manner that more resembled the
action of a salt than that of a high-molecular-weight PEG.
This may reflect the fact that smaller PEGs probably
precipitate proteins more by a solvent competition effect
than a volume exclusion effect. Also, zinc in conjunction
with PEG yielded different solubility behavior than other
salt/PEG combinations, likely reflecting the ability of
transition metals to effect strong interactions between
proteins by virtue of their ligand chemistry.

Organic precipitants formed a minor part of the screen.
There are four MPD conditions (1, 5, 21, and 26) that
yielded a modest numbers of crystals (39 proteins crystal-

lized, average of 14 crystals per condition). The 5 condi-
tions in which isopropanol was the primary precipitant (8,
12, 19, 24, and 27) yielded few crystals (average 9 crystals
per condition, 39 proteins crystallized) unless combined
with 20% PEG (40 and 41). In vapor diffusion experiments,
the slow diffusion of water from the drop, where vapor
pressure is higher, to the well, where vapor pressure is
lower, drives a gradual increase in protein and precipitant
concentration in the drop that may eventually lead to the
crystallization of the protein. Volatile precipitants, on the
other hand, tend to diffuse in the opposite direction,
decreasing protein concentration. In the case of isopropa-
nol this happens rapidly, making this precipitant perhaps
better suited to batch experiments than vapor diffusion.
Overall, the 9 conditions that contain organic precipitants
crystallized 66 proteins, 10 of which grew only in these
conditions.

Mining the Information to Identify Minimal
Screens

The strong interdependence of various conditions of the
Jancarik and Kim screen implies that it is, in its present
formulation, less than ideal. Several conditions produced
few crystals, while other groups of conditions, such as
those based on high-molecular-weight PEGs, were too
highly correlated. We set out to identify reduced condition
sets that minimally compromise the chances of getting at
least one crystal. Sequential searches of all combinations
of conditions yielded a series of minimal screens (Table III)
that comprised sets of conditions optimized for maximal
probability of successfully obtaining a crystal [Fig. 1(c)]. A
potential drawback of optimizing coverage at the expense
of redundancy was that alternate crystal forms with
different diffraction qualities might be missed; in those
instances where a different crystal form would prove
desirable, a second round of screening could then be
initiated.

Six conditions—6, 10, 18, 38, 39, and 43 (referred to
hereafter as minimal screen 6)—yielded crystals for 205 of
the 338 proteins (60.6%) successfully crystallized by the
full screen. It is interesting to note the dispersion of these
conditions—high-molecular-weight PEG at acid, neutral,
and basic pH (10, 18, and 6), low-molecular-weight PEG
(43), and two different salts (38 and 39). Augmenting this
set with conditions 4, 17, 30, 36, 41, and 45 (minimal
screen 12) yielded 268 of the 338 crystals (79.3%), and
adding a further 12 conditions—1, 11, 13, 14, 16, 20, 21, 28,

TABLE III. Minimal Screens†

Screen Conditions included
# proteins

crystallized
% crystals

vs. full screen

% of total
proteins

crystallized

Minimal screen 6 6, 10, 18, 38, 39, 43 205 61 27.1
Minimal screen 12 4, 6, 10, 17, 18, 30, 36, 38, 39, 41, 43, 45 268 79 35.5
Minimal screen 24 1, 4, 6, 10, 11, 13, 14, 16, 17, 18, 20, 21, 28, 30, 33, 34, 35,

36, 38, 39, 41, 42, 43, 45
318 94 42.1

JK 1–48 1–48 338 100 44.8
†These screens are not only potentially useful in their own right (e.g., in cases where material is limited) but also may potentially serve as the
nucleus of a new, more efficient screen.
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33, 34, 35, and 42 (minimal screen 24)—yielded 318 of the
338 crystals (94.1%). In addition to the conditions defined
as minimal screen 24, the omission of conditions 22, 23, 27,
32, and 46 from the screen would have each resulted in 2
fewer proteins being crystallized, while the omission of
conditions 8, 9, 12, 15, 25, 26, 37, 44, 47, and 48 would have
each resulted in 1 fewer protein being crystallized. Nine
conditions—2, 3, 5, 7, 19, 24, 29, 31, and 40—could have
been omitted from the screen entirely without losing a
single crystal from 755 samples.

Note that had the conditions for the minimal screens
been chosen by considering only the total number of
crystals produced per condition significantly less produc-
tive screens would have resulted. For example, the 6
individually most productive conditions crystallized 180
proteins compared to 205 for the optimal 6.

Screening data can also be mined for trends in precipita-
tion. For example, the conditions employing tartrate and
acetate salts as the primary precipitant were not only
among the poorest crystal producers but also among those
least likely to precipitate a protein. Because for the
majority of proteins supersaturation was never reached
with these precipitants, a substantially higher concentra-
tion may be predicted to be more effective.

Rational Strategy for Producing Maximally
Productive Screens

Although the Jancarik and Kim screen has proved a
useful tool for a generation of crystallographers, it is clear
that a more efficient screen of a similar size could be
derived from it by substituting some of its less productive
conditions with ones chosen that demonstrably comple-
ment its more productive conditions. With sufficient data
it is a relatively straightforward procedure to eliminate
those conditions that contribute little, and iterative cycles
of further additions, testing, and elimination should allow
the eventual optimization of the screen. Analysis of the
data generated may also help suggest suitable candidate
conditions for expanding the screen. Conditions that show
a strong tendency to uniquely crystallize proteins are
likely in regions of parameter space that are under-
sampled and could therefore yield more crystals. For
example, of the 62 proteins crystallized by condition 38, 11
are uniquely crystallized by this condition, implying that
citrate salts have some unique properties whose potential
for crystallization is underexploited by the present screen.
Similarly, further conditions with transition metal ions
(such as condition 45) and intermediate-molecular-weight
PEGs (such as in condition 43) might also prove useful
additions.

Employing such a strategy, one can experiment with a
wide variety of conditions without increasing the amount
of work to unmanageable proportions and without sacrific-
ing the proven productivity of a core set of conditions—
important considerations given that the only practical
manner to obtain sufficient samples and data to imple-
ment this strategy is to incorporate it into ongoing struc-
tural proteomics efforts. Also, because of the tentative
nature of additions, this strategy should encourage the

exploration of chemically diverse conditions that might
otherwise not be thought sufficiently “safe” to include in a
fixed, generally used screen.

In this study, a crystallization database was created and
mined to find the most productive screening conditions,
highlighting the value of such efforts within structural
proteomics projects. Clearly, not only this sort of informa-
tion can be extracted from the data, and there is more
analysis to perform. For example, whereas this data set
comprises the best conditions to identify initial crystals,
most of these crystals have not been optimized to form
diffraction-quality crystals. It will be interesting to learn
whether there are differences in the suitability of different
conditions as a starting point for producing large, well-
diffracting crystals. The data could also be analyzed for
solubility properties rather than crystallization. In this
way, one may be able to identify a set of solution conditions
that most often yield soluble protein—something poten-
tially useful for NMR experiments, for example. Both
solubility data and crystallization data should ultimately
be linked to the biophysical properties of the proteins, such
as the isoelectric point or amino acid content. Clearly, the
crystallization databases resulting from structural pro-
teomics projects can yield important information, and
efforts should be expended to ensure that they are rou-
tinely collected in a consistent, machine-readable format.

CONCLUSIONS

Initial crystallization conditions for a novel macromolecu-
lar sample are obtained by screening the sample against a
wide variety of chemical “cocktails,” in general a generic
set preselected for their historically proven efficacy in
producing crystals. Despite the critical nature of this step,
however, no systematic effort has been made to optimize
the set of conditions to be used. Here, we used data
generated by subjecting a large set of proteins against a
commonly used, commercially available screen to obtain a
clearer picture of the overall efficacy of the present screen-
ing strategies and see if there are obvious ways to improve
them. This data leads to several nontrivial conclusions: (1)
Among archaeal and bacterial genomes, there appear to be
large differences in the degree to which proteins are
tractable to crystallization; (2) a small subset of the
conditions, even in the relatively small Jancarik and Kim
screen, are responsible for a large proportion of crystals
obtained overall; (3) as a corollary to this, screening
hundreds of conditions, as advocated in some screening
protocols, is little more likely to yield a crystal than
searching a few tens of well-chosen conditions. The results
of this experiment suggest that iteratively adding new
conditions, testing against a large set of proteins, and
rejecting those conditions that contribute least should
allow the fine-tuning of existing screens while still having
a useful screen in place at all times. Ultimately this will be
of great benefit to structural proteomics efforts as an
efficient, optimized screen will give maximal samples for
structure solution while minimizing the amount of time
and material wasted on unneeded experiments.
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