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ABSTRACT 
We analyzed ten genome expression data sets by large-scale cross-referencing against 

broad structural and functional categories.  The data sets, generated by different 

techniques (for instance, SAGE and gene chips), provide various representations of the 

yeast transcriptome (the set of all yeast genes, weighted by transcript abundance).  Our 

analysis enabled us to determine features more prevalent in the transcriptome than the 

genome -- i.e., those that are common to highly expressed proteins.  Starting with 

simplest categories, we find that, relative to the genome, the transcriptome is enriched in 

Ala and Gly and depleted in Asn and very long proteins. We find, furthermore, that 

protein length and maximum expression level have a roughly inverse relationship.  To 

relate expression level and protein structure, we assigned transmembrane helices and 

known folds (using PSI-blast) to each protein in the genome; this allowed us to determine 

that the transcriptome is enriched in mixed alpha-beta structures and depleted in 

membrane proteins relative to the genome.  In particular, some enzymatic folds, such as 

the TIM barrel and the G3P dehydrogenase fold, are much more prevalent in the 

transcriptome than the genome, whereas others, such as the protein-kinase and leucine-

zipper folds, are depleted.  The TIM-barrel, in fact, is overwhelmingly the "top fold" in 

the transcriptome, while it only ranks fifth in the genome.  The most highly enriched 

functional categories in the transcriptome (based on the MIPS system) are energy 

production and protein synthesis, while categories such as transcription, transport, and 

signaling are depleted.  Furthermore, for a given functional category, transcriptome 

enrichment varies quite substantially between the different expression data sets, with a 

variation an order of magnitude larger than for the other categories cross-referenced (e.g., 

amino acids). One can readily see how the enrichment and depletion of the various 

functional categories relates directly to that of particular folds. Further information can be 

found at bioinfo.mbb.yale.edu/genome/expression. 
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INTRODUCTION 

Whole-genome expression experiments have become important tools in functional 

genomics.  The result of these experiments, the expression levels of all the genes in the 

genome, has been dubbed the transcriptome (1). Many of the initial expression 

experiments have focused on the eukaryote yeast for technical reasons as well as the fact 

that it is a widely studied model organism with a known genome sequence (2).  

Quantitative profiles of the yeast transcriptome have been determined for a variety of 

conditions using serial analysis of gene expression (SAGE) (1) as well as gene chip 

technology (8, 9, 10, 11).  Brown and colleagues have developed cDNA microarrays to 

conduct time-course experiments measuring the expression changes of yeast genes in 

response to a variety of conditions (3, 4, 5; 6, 7).  Researchers have also started to 

investigate quantitative protein abundance profiles for yeast, using such approaches as 

fusion proteins (12) and 2D-gels (13). 

 

Various approaches have been proposed to interpret the wealth of data generated by these 

experiments.  Algorithms to cluster genes into functionally related groups have been 

proposed (14, 15, 16, 17).  Roth et al. (10), van Helden et al. (18), and Brazma et al. (19) 

have introduced new ways to identify regulatory regions located upstream of genes.  

Gerstein proposed an initial ranking of protein folds in terms of their expression levels 

(20).  A number of proposals have been made for the archiving and management of 

expression data (21). 
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Here we present another way to interpret gene expression data.  We perform large-scale 

"cross-referencing" of expression data against a number of structural and functional 

categories. These categories include (i) simple characteristics shared by all proteins, their 

amino-acid composition and length; (ii) aspects of protein structure, fold family and 

number of transmembrane helices; and (iii) broad functional classes.  The correlation of 

expression level with these categories gives us insight into the characteristics of highly 

expressed proteins and also suggests some interesting conclusions about the overall 

biochemistry of the yeast cell.  More specifically, we compare the composition of all our 

categories in the transcriptome with that in the genome.  We find that the transcriptome is 

notably enriched with certain types of proteins -- e.g., those rich in Ala and Gly, those 

with a mixed alpha-beta structure, and those associated with energy production and 

protein synthesis -- and depleted in others -- e.g., Asn-rich proteins, membrane proteins, 

very long proteins, and transcription factors and transport proteins. 

 

Expression Data 

We based our analysis of the yeast transcriptome on a diverse set of publicly available 

expression experiments, which are summarized in Table 1 a.  Including data sets derived 

from different experimental techniques potentially reduces the bias introduced by 

focusing on one particular experiment.  We focused more on data from DNA chips and 

SAGE technology rather than cDNA microarray experiments, since DNA chips and 

SAGE allow a better measurement of the absolute number of transcript copies for an 

open reading frame (ORF), facilitating direct comparisons between ORFs. In contrast, 

cDNA microarrays mainly measure expression level changes of a given ORF as ratios to 
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a reference point, and ORF-to-ORF comparisons at a given time point are more 

problematic. 

 

In presenting our data, we decided, for convenience, to use the data set generated by 

Holstege et al. (9) as the main reference.  This data set represents the average of two 

transcript abundance level measurements for most yeast genes.  Furthermore, the authors 

report that 99% of these transcripts exhibited a less than 2-fold change in the two 

measurements.  We also extensively used the SAGE data sets (1), which give expression 

profiles of a large but less complete subset of the yeast genome in different conditions; 

the gene chip data generated by Roth et al. (10), which represent profiles of the yeast 

transcriptome for different conditions; and the gene chip data by Jelinsky et al. (11), who 

investigated expression profiles before and after the yeast cell is subjected to an 

alkylating agent (we only used the first, more typical, profile). 

 

General Approach 

Most of our analyses have the same basic structure, which is schematized in Table 1 b.  

First, we compute the genome composition of a specific category, then we compute its 

composition in the transcriptome, and finally we determine its enrichment in the 

transcriptome, that is, the relative difference between transcriptome and genome 

composition.  For computing transcriptome compositions we weight each gene with its 

respective expression level.  With the term “genome” we refer, strictly speaking, only to 

the set of open reading frames which are covered by each particular expression 

experiment.  In this sense, the “genomes” covered by two different expression 
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experiments might include different yeast ORFs, and therefore their composition (of a 

particular amino acid, for instance) might be different -- though in practice these 

differences are generally very small. 

 

Our complete results and additional information (such as genome and transcriptome 

compositions, and number of proteins per category) are available on the internet at 

http://bioinfo.mbb.yale.edu/genome/expression. 

 

RESULTS 

Transcriptome Composition of Amino Acids 

One of the simplest attributes associated with a protein is its amino acid composition.  

The amino acid compositions of the genome and the transcriptome differ significantly for 

some amino acids.   This is shown in Figure 1 a.  The amino acids are ordered along the 

x-axis in the order of increasing transcriptome enrichment for the reference data set by 

Holstege et al. (9).  Although the results vary between the different expression data sets, 

they all follow a general trend.  Most notably, the composition of Ala increases by about 

30 to 40 % whereas the composition of Asn decreases by about 20 %.  The transcriptome 

is also significantly enriched in Gly and Val and the positively charged amino acids, Arg 

and Lys. 

 

As mentioned before, the data from cDNA microarrays, as given by ratios of red and 

green fluorescence intensities, is primarily used for the measurement of expression level 
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changes.  These data are less suitable for absolute expression level measurements.  For 

purely illustrative purposes, we analyzed amino-acid enrichment in the transcriptome 

using the red fluorescence intensity less the background intensity of the cDNA 

microarray data set as a crude approximation of the absolute expression level (Figure 1 

b).  Although the results for the enrichment of amino acid composition have a trend 

similar to that in figure 1 a, the magnitudes are much smaller (as expected).  It can also be 

observed that there appears to be little difference in the amino acid composition of the 

transcriptome for different time points measured during the diauxic shift experiment, 

suggesting that even though the precise proteins that make up the transcriptome change in 

different conditions, the overall amino acid composition remains very similar.  This is 

also suggested by the fact that there is little variance in transcriptome amino acid 

composition between DNA chip experiments in different conditions -- i.e., between the 

different data sets of Roth et al. (10). 

 

Relationship between Gene Length and Expression Level 

Figure 2 shows the relationship between protein length (measured by the number of 

residues in the sequence) and expression level for the reference data set. It is obvious that 

there is no direct relationship between these two quantities.  However, it seems that 

protein length is in some way an upper limit for the expression level of the corresponding 

gene.  The straight line in figure 2 represents the fit of a hyperbolic function through the 

maximum protein length at a given expression level.  If the maximum protein length for a 

given expression level were inversely proportional to the expression level, the slope of 

this line would be equal to about -1.  We find the slope to be about -0.7 for the data set of 
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Holstege et al. (9).  We find similar relationships for the other data sets (details in caption 

to figure 2).  The expression level of a short gene is dependent on the rate of transcription 

of RNA polymerase in relation to the rate of mRNA degradation.  However, for a long 

gene, the overall rate of transcription might also be affected by the processivity of RNA 

polymerase -- i.e. by the chance that the polymerase falls off. 

 

Transcriptome Composition of Membrane Proteins 

Another aspect of protein structure we analyzed was the occurrence of membrane 

proteins in the transcriptome. Membrane proteins are often classified in terms of the 

number of hydrophobic transmembrane (TM) helices they contain.  We identified yeast 

ORFs coding for membrane proteins using a standard hydropathy scale and a sliding 

window, as described previously (20) (further details in the caption to figure 3 a).  Based 

on their most hydrophobic segment, we divided the predicted membrane proteins into 

"sure" and "marginal" candidates (using the MaxH approach also described in the 

caption) and then classified them further based on the number of TM-helices they 

contain.  Figure 3 a shows how the composition of ORFs with "sure" transmembrane 

regions changes from genome to transcriptome.  For comparison we also show the 

relative enrichment of soluble proteins (for which no transmembrane region is predicted).  

The results show that, in general, helical membrane proteins are underrepresented in the 

transcriptome relative to the genome, whereas soluble proteins are enriched by about 

22%.  Furthermore, some classes of membrane proteins are more highly enriched than 

others, for instance, those with four TM-helices are more enriched than those with one or 
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two TM-helices.  However, for many of the membrane structure categories there is 

considerable variation between the different experiments. 

 

Transcriptome Composition of Fold Classes 

In the previous section we compared the transcriptome enrichment of membrane and 

soluble proteins.  Here we subdivide soluble proteins further according to their folds.  To 

do this, we matched the PDB structure database (22) against the yeast genome using an 

iterative database search program (PSI-blast) (23) (see caption to figure 3 b for more 

details on our fold assignment methods).  Overall we found a total of 2305 domain level 

matches in 1710 distinct ORFs (about 27% of the genome).  We classified these structure 

matches into one of 344 folds using the Structural Classification of Proteins (SCOP) (24). 

In addition, each fold is further grouped into one of six soluble protein classes – for 

instance, all-alpha, all-beta, alpha/beta, etc. (25). 

 

For each domain match we looked at the expression level of the corresponding ORF.  

Figure 3 b shows the relative differences of the composition of protein fold classes 

between genome and transcriptome.  The fold classes are sorted along the x-axis in the 

order of increasing transcriptome enrichment for the reference data set.  We observe an 

increase in the fraction of mixed alpha and beta folds (alpha+beta and alpha/beta) while 

the fraction of the other fold classes decreases.  It is also interesting to note that while the 

all-alpha class is depleted in the transcriptome, the most helix-favoring amino acid, Ala 

(26), is greatly enriched (see figure 1 a). 
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For fold class composition, the results for the SAGE experiments and the gene chip 

experiments differ quite a bit from each other.  This may be attributed to the substantially 

smaller number of ORFs covered by the SAGE experiments, which sample the structure 

matches in a somewhat biased fashion.  Furthermore, the much greater enrichment of 

mixed helix and sheet structures in the SAGE experiments may, to some degree, result 

from the fact that these proteins tend to be longer (27) and the SAGE experiment is 

somewhat weighted towards longer proteins. 

 

Top Folds in the Transcriptome 

Figure 4 shows the top-ten most highly expressed protein folds in yeast.  Their exact 

fractions in the transcriptome are listed for the reference data set of Holstege et al. (9) and 

schematized with rankings for the other sets.  The ranking of the most common folds in 

the transcriptome and the genome are very different.  The most common transcriptome 

fold, by a large margin, is the TIM-barrel (8% vs. 5% for the second ranked fold), which 

is by contrast only ranked fifth in the genome.  Many of the other common folds in the 

transcriptome also have a mixed alpha/beta structure and are associated with enzymatic 

functions, for instance, the P-loop NTP hydrolase, ferrodoxin, Rossmann, thioredoxin, 

and G3P dehydrogenase folds.  In particular, the G3P dehydrogenase fold is greatly 

enriched in the transcriptome relative to the genome, increasing from 0.2% to 2.7%.  

Common folds in the genome that are depleted in the transcriptome include the protein 

kinase (catalytic core), long helix oligomers (the Leu-zipper fold), and the Zn2-C6 DNA 

binding domain. This makes sense since these folds act as "switches" in signaling and 

transcription-factor functionality and thus do not need to be present in large quantities.  In 
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contrast, cytosolic enzymes are needed in bulk to ensure high throughput in synthetic and 

energy-producing pathways (see figure 5). 

 

The top-folds analysis is a relatively "fine-grained" measurement, dividing the 

transcriptome into many categories, thus making the differences between the various 

experiments more apparent.  Some of these differences may be explained by the different 

conditions probed by each experiment; others may reflect the natural variability of the 

experiments.  However, in all cases the most common transcriptome fold always remains 

the TIM-barrel.  These fine-grained differences are also evident in the analysis of cDNA 

microarray data for the diauxic shift in yeast (5), which shows that the fold class 

composition does not change much over the time course of the experiment, but the 

ranking of the most common folds by expression level does. (Data not shown; related 

data in ref. 19; absolute expression levels are approximated as explained in the caption to 

figure 1 b.) 

 

It is well known that protein abundance can vary quite significantly for a given mRNA 

transcript abundance level.  Recent large-scale studies suggest that there is only a weak 

linear relationship between mRNA and protein abundance for many genes, especially for 

weakly expressed genes (13).  On the other hand, mRNA abundance is certainly still a 

better measure of protein abundance than genome content.  From our results it seems 

clear that the distribution of folds in the cell's proteins is very different from that in the 

genome complement. 
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Transcriptome Composition of Functions 

To analyze the transcriptome in terms of broad functional categories, we used the 

functional categorization of the Munich Information Center for Protein Sequences 

(MIPS) (28, 29, 30), which divides proteins amongst a hierarchy of functional categories 

(for instance, “synthesis”, “metabolism” etc. on the top level of the hierarchy). 

 

Figure 5 shows the transcriptome enrichment of the various functional categories at the 

top level of the MIPS system.  The functional categories are sorted along the x-axis in the 

order of increasing transcriptome enrichment for the reference data set.  We observe an 

increase in the number of the proteins in the category "protein synthesis" of about 200 - 

500 % depending on the data set.  This is considerably larger than the change for the 

structural categories or simpler categories such as amino acid composition (5-fold vs. 

40%).  The transcriptome is also notably enriched in proteins associated with energy 

production, cell structure, and protein synthesis (most often ribosomal proteins).  None of 

the other broad categories are as greatly depleted as these are enriched.  However, it is 

worth noting that the depleted categories include transcription factors and signaling and 

transport proteins.  Furthermore, the fraction of unclassified proteins in the transcriptome 

is lower than in the genome, perhaps because the more highly expressed genes are easier 

to study experimentally.  There is also great variability between the different 

experiments; depending on the experiment, the most highly enriched MIPS category is 

different. (For instance, the most highly enriched category is “protein synthesis” for the 

reference data set by Holstege et al. (9), but “energy” for some of the SAGE data sets.) 
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DISCUSSION AND CONCLUSION 

It is clear from our results that the structural and functional categories we investigated are 

differently distributed in the transcriptome and the genome.  That is, the proteins of 

highly transcribed genes have on average different characteristics than the unweighted 

protein complement in the genome.  There are variations between the different expression 

experiments, but we can observe some general trends in how structural and functional 

features occur in the transcriptome.  In particular, we find that the transcriptome is 

enriched in Ala, Gly and, to a lesser extent, positively charged residues, soluble folds 

with combinations of helices and sheets, and proteins involved in protein synthesis (in 

particular ribosomal proteins), cell structure, and energy production.  Likewise, it is 

depleted in membrane proteins, transport, transcription, and signaling proteins, very long 

proteins, and those rich in Asn. Common sense, as well as a number of previous surveys, 

suggests that many of these structural and functional categories are interrelated (31, 32).  

Thus, for instance, proteins involved with protein synthesis or energy production are 

often enzymes, which tend to be associated with alpha/beta architectures.  Likewise, 

membrane proteins tend to have less charged residues than soluble ones and also tend to 

have transport or signaling functions. 

 

Looking at the variability of the transcriptome enrichment between experiments, it is 

particularly interesting to note that the greatest variability can be observed for the MIPS 

functional categories while the variability of amino acid composition is an order of 

magnitude lower.  It seems that the usage of amino acids is very similar even when 

differential gene expression occurs to accommodate different functional tasks in the cell.  
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This indicates that the cell might have to meet general requirements in its amino acid 

usage. 

 

One requirement might be energy expenditure. In the metabolism of the yeast cell, Ala, 

which is the most enriched amino acid in the transcriptome, is synthesized directly in one 

step from pyruvate, a precursor of the TCA cycle. In contrast, Asn, the most depleted 

amino acid in the transcriptome, follows a more involved route. It is synthesized in two 

steps from oxaloacetate, the last component in the TCA cycle; in addition, the conversion 

of aspartate (Asp) to asparagine (Asn) involves conversion of ATP to AMP.  This is the 

only step in amino acid biosynthesis in which two pyrophosphates are consumed at the 

same time.  Thus, by strongly favoring Ala over Asn in highly expressed proteins, it 

seems that the cell has adapted to these energetic realities in the course of evolution.  

Further research could elaborate on this anecdotal evidence by looking comprehensively 

at the metabolic network in the cell. 

 

In the context of Asn, it is also interesting to note that in some organisms (notably some 

archeons) Asn-tRNA is produced by an alternative pathway (transamidation) from Asp-

tRNA (45).  In the mitochondria of yeast, Gln-tRNA is synthesized by transamidation 

from Glu-tRNA; this might be related to the depletion of Gln in the yeast transcriptome. 

 

It is worth emphasizing that this study uses mRNA abundance rather than protein 

abundance in the cell.  It is to be hoped that techniques for large-scale protein abundance 
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measurement will be developed that will provide us with better view of the cellular 

machinery. 
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FIGURES AND TABLES 

Figure 1, Transcriptome Enrichment of Amino Acids 

In Part A, the amino acids are ordered along the x-axis according to the transcriptome 

enrichment found for the reference data set of Holstege et al. (9). Although the results 

vary between the different expression data sets, they all follow a general trend.  Most 

notably, the composition of Ala increases by about 30 to 40 % whereas the composition 

of Asn decreases by ~ 20 %.  The transcriptome is also significantly enriched in Gly and 

the positively charged amino acids, Arg and Lys. 

 

Part B shows the transcriptome enrichment calculated for the cDNA microarray 

expression data of the diauxic shift in yeast (5).  The data from this experiment is 

primarily used for the measurement of expression level changes and we show the 

transcriptome enrichment only for purely illustrative purposes.  Here we use the red 

fluorescence intensity minus the background intensity as measured by DeRisi et al. (5) as 

a crude approximation of the absolute expression level of a given ORF.  We look at both 

time point 1 (fermentation) and time point 7 (respiration) of the experiment. 

 

Figure 2,  Dependence of Expression Level on Gene Length. 

We plotted protein length versus expression level for the reference data set of Holstege et  

al. (9). (For the other data sets, see http://bioinfo.mbb.yale.edu/genome/expression).  
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Each point on the graph represents one ORF and the axes of the graph are on a 

logarithmic scale.  It is obvious that there is no strong positive or negative correlation 

between protein length and expression level (correlation coefficient is -0.16).  However, 

it seems that protein length is related to the upper limit of the expression level possible 

for a given group of ORFs.  A rough way to characterize this upper limit is to fit the 

hypberbolic function ( )AEKL =  through the maximum protein lengths L (in units of 

amino acid residues) at given expression levels E (in units of transcripts per cell); K and 

A are constants.  For the reference set of Holstege et al., parameter A was determined to 

be about 0.7 and K to be about 4107.4 ⋅ .  The table below lists the values for parameters 

A and K for all data sets.  

Data 
Set 

Holstege et 
al. (9) 

Jelinsky 
et al. (11) 

Roth et al., 
mat. type a 

(10) 

Roth et al., 
mat. type 
alpha (10) 

Roth et al., 
galactose 

(10) 

Roth et al., 
heat shock 

(10) 

SAGE, 
G2/M 

phase (1) 
SAGE, log 
phase (1) 

SAGE, S 
phase (1)

A 0.72 0.59 0.61 0.63 0.65 0.68 0.51 0.55 0.52 
K 4107.4 ⋅  5108.2 ⋅  4104.7 ⋅ 4100.5 ⋅ 4104.3 ⋅ 4108.2 ⋅ 6106.2 ⋅  4102.1 ⋅  6107.1 ⋅

 

As can be seen in figure 2 (especially on the left-hand side), the expression data is 

discrete, which makes the functional fit possible; this is due to the resolution limit of the 

experimental data (0.1 copies per cell for the data set of Holstege et al. (9)).  Different 

data discretizations affect the slope of the straight line somewhat (that is, parameter A), 

but the general trend -- protein length is related to maximum expression level -- can 

always be observed. 
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Figure 3, Transcriptome Enrichment of Structural Classes 

Part A shows the transcriptome enrichment of membrane proteins compared with soluble 

ones.  We identified yeast ORFs coding for membrane proteins using the GES 

hydrophobicity scale (33).  The values from this scale in a window of size 20 (the typical 

size of a transmembrane helix) were averaged and then compared against a cutoff of -1 

kcal/mole.  A value under this cutoff was taken to indicate the existence of a 

transmembrane helix.  Initial hydrophobic stretches corresponding to signal sequences for 

membrane insertion were excluded.  (These have the pattern of a charged residue within 

the first seven, followed by a stretch of 14 with an average hydrophobicity under the 

cutoff.)  These parameters have been used, tested, and refined in surveys of membrane 

proteins in genomes (34, 35, 36, 20).  "Sure" membrane proteins had at least one TM-

segment with an average hydrophobicity less than -2 kcal/mole. "Marginal" membrane 

proteins had GES-identified TM-helices but did not fulfill this "MinH" criteria. This 

approach is similar to Boyd & Beckwith's MaxH criteria (37) and to the approach of 

Klein et al. (38).   

 

Part B shows the transcriptome enrichment of soluble fold classes.  The fold classes are 

sorted along the x-axis in the order of increasing transcriptome enrichment for the 

reference data set.  To assign folds to the yeast genome, we followed a protocol similar to 

the one described previously, matching the PDB structure database against the yeast 

genome using both PSI-blast and FASTA (31, 39, 40, 23, 41, 42, 43).  We used the 

following parameters in our PSI-blast searches: an inclusion threshold (h) of 10-5, the 
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maximum number of iterations (j) of 10, and a final e-value cutoff of 10-4.  These 

parameters are somewhat stricter than those used in previous PSI-blast analyses -- e.g., 

our inclusion parameter is about 1/20 of that in Teichmann et al. (1998) (44) (who used 

4105 −⋅=h  and  j = 20); the inclusion parameter determines to which degree further 

homologs of a sequence are included at the next PSI-blast iteration. (A higher value leads 

to the inclusion of more sequences and greater coverage. However, an inclusion too high 

can lead to a corrupted profile and spurious matches.)  We monitored our parameter 

settings by looking at how many domains were assigned to two different protein folds 

(obviously an erroneous assignment) and made sure this number was virtually nil.  For 

the FASTA searches we used the usual e-value cutoff of 10-2 used in previous analyses 

(43). 

 

Figure 4, The top-ten most highly expressed protein folds in yeast 

The folds are listed from top to bottom in the order of decreasing transcriptome 

composition for the reference data set of Holstege et al. (9). In the left half of the table we 

first list the protein fold, then its fold class and the identifier for a representative structure 

in the Protein Data Bank (PDB) (22).  In the columns "genome", "transcriptome" and 

"transcriptome enrichment", we list the genome and transcriptome compositions and the 

transcriptome enrichment of each fold.  The right half of the table shows the rankings of 

each fold based on its transcriptome composition in the different expression data sets.  

For comparison we also show the ranking in the genome -- i.e. based purely on the level 

of duplication within the genome.  The genome compositions are calculated with respect 

to the ORFs for which expression levels in the reference data set exist. Their exact 



 21 
 
 

fractions in the transcriptome are listed for the reference data set and are schematized 

with rankings for the other sets.  The ranking of the most common folds in the 

transcriptome and the genome are different.  For instance, the most common 

transcriptome fold by a large margin (8% vs. 5% for the 2nd ranked fold) is the TIM-

barrel, which is only ranked fifth in the genome. 

__ 

* The second domain of this two-domain protein represents a G3P dehydrogenase-like fold. 
 

Figure 5, Transcriptome Enrichment of MIPS categories 

To analyze the transcriptome in terms of broad functional categories, we categorized the 

yeast ORFs using the functional categorization provided by MIPS (28, 29, 30).  The 

functional categories are sorted along the x-axis in the order of increasing transcriptome 

enrichment for the reference data set.  

 

Table 1, Overview of Data and Methods 

Part A, Overview of the expression data sets used in our analysis.  

The columns "reference" and "URL" provide the literature reference and the internet 

address of the data sets.  Column "# ORFs covered" shows for how many different yeast 

ORFs expression levels were measured in the respective experiment.  The column labeled 

"technology" shows the technology with which the data sets were obtained.  All the data 

from the expression experiments as well as the soluble and membrane fold assignments 

were homogenized and relationalized and stored in a simple database. 



 22 
 
 

 

We focused more on data from DNA chips (9, 10, 11) and the SAGE technology (1) than 

that from cDNA microarray experiments (5) since the former techniques allow a better 

measurement of the absolute number of transcript copies for a gene.  In presenting our 

data, we decided, for convenience, to use the data set generated by Holstege et al. (9) as 

the main reference.  For the SAGE data set we only considered SAGE tags that occur at 

most once per genome and fall into an ORF (rather than upstream regions) (1). 

 

Part B, the general approach in our calculations 

First, we calculate the genome composition of a specific feature F, G(F).  Then, we 

compute the composition of feature F in the transcriptome, T(F); this is achieved by 

weighting the count of feature F with the expression level ei of the corresponding ORF i.  

Finally, D(F) yields the transcriptome enrichment of feature F, the relative difference 

between its transcriptome and genome compositions.  The table shows the calculation of 

the transcriptome enrichment D(F) for the amino acid Ala and the TIM-barrel fold as 

examples based on the data set by Holstege et al (9).  To be consistent, we include only 

those ORFs in our calculations (of both the transcriptome and the genome composition) 

for which an expression level ei exists.  Because the set of ORFs for which expression 

levels were measured vary between the different experiments (see part A), different 

genome compositions are obtained for each experiment.  However, these differences are 

generally very small and do not influence the results significantly. 
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DeRisi et al.,
time point 1 (5)
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Table 1 a 
 

Technology Reference URL (http://…) # ORFs 
covered Description 

Holstege, 
Jennings et al. 

1998 (9) 

web.wi.mit.edu/young/ 
expression 5455 Vegetative growth 

Jelinsky and 
Samson 1999 

(11) 

www.hsph.harvard.edu/ 
geneexpression 6281 Response to alkylating agent 

Mat. type a, glucose (30 deg. C) 

Mat. type α, glucose (30 deg. C) 
Mat. type a, galactose (30 deg. C) 

Gene chip 

Roth, Hughes 
et al. 1998 

(10) 

arep.med.harvard.edu/ 
mrnadata/expression.html 6214 

Mat. type a, glucose (39 deg. C) 
Yeast transcriptome – G2/M phase 

Log phase 
Serial 

Analysis of 
Gene 

Expression 
(SAGE) 

Velculescu, 
Zhang et al. 

1997 (1) 

www.sagenet.org/ 
yeast/yeastintro.htm 3005 

S phase 

cDNA 
microarray 

DeRisi, Iyer et 
al. 1997 (5) 

cmgm.stanford.edu/ 
pbrown/explore 6153 Time course of diauxic shift 
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T(F) D(F) 

Amino acids, 
in particular 
Ala 

Number of Ala 
in yeast 
genome 

Number of 
amino acids in 
yeast 

Genome 
composition of 
Ala in yeast 

Number of Ala 
weighted by 
expression 

Number of 
amino acids 
weighted by 
expression 

Transcriptome 
composition of 
Ala in yeast 

Relative 
enrichment of 
Ala in 
transcriptome 

Numbers 141890 2574876 5.5% 347801 4758441 7.3% 32.7% 
Folds, in 
particular the 
TIM-barrel 
(3.1) 

Number of 
TIM-barrel 
fold matches 
in yeast 
genome  

Number of 
matches with 
all folds in 
yeast genome 

Genome 
composition of 
TIM-barrel 
fold matches 

Number of 
TIM-barrel 
fold matches 
weighted by 
expression 

Number of 
matches with 
all folds 
weighted by 
expression 

Transcriptome 
composition of 
TIM-barrel 
fold matches 

Enrichment of 
TIM-barrel 
fold matches 
in 
transcriptome 

Numbers 65 1560 4.2% 389 4709 8.3% 97.8% 

 
 
 


