TopNet is an automated web tool designed to calculate topological parameters and compare different sub-networks for any given network. TopNet takes as input an adjacency matrix or network and a set of nodes chosen to create sub-networks. Then, it computes all topological parameters mentioned above and shows the power-law degree distribution for each sub-network. TopNet also enables the user to explore the complex networks part by part. First, all first neighbors of a certain node could be shown as a simple graph. Secondly, after the user defines two nodes of interest and a maximum path length, the sub-network between these two nodes with all the nodes on the path within the maximum path length will be drawn as an independent graph.

What is TopNet?
TopNet is an automated web tool designed to calculate topological parameters and compare different sub-networks for any given network. TopNet takes as input an adjacency matrix or network and a set of nodes chosen to create sub-networks. Then, it computes all topological parameters mentioned above and shows the power-law degree distribution for each sub-network. TopNet also enables the user to explore the complex networks part by part. First, all first neighbors of a certain node could be shown as a simple graph. Secondly, after the user defines two nodes of interest and a maximum path length, the sub-network between these two nodes with all the nodes on the path within the maximum path length will be drawn as an independent graph.

Start to use TopNet
- Upload your own dataset here. Both category dataset and interaction dataset can be accepted.
- Calculate the topology parameters: diameter, average path length, and clustering coefficient. The data to be calculated can be freely selected from gene datasets or datasets uploaded by the user.
- Navigate within the interaction network. Select all the neighbours of one node. Links from different interaction datasets are separated by different colors.
- Visualize all the possible paths of every two nodes. The maximum length of the path is defined by the user.

- Click [here](#) to enter the download page
- Click [here](#) to enter the reference page

Last updated: 07/06/2021
Nodes in sub-network A

Nodes in sub-network B

Shortest path in the whole network

Shortest path in sub-network A

Degree of s is 4, not 3

Distance between s and t is 2, not 3
$K = 10.82 \ln(E) + 27.56$

$R^2 = 0.9099$

$P < 10^{-8}$
Figure 6

(A) Plot showing the relationship between the fraction of helices (H) and the average degree (K). The regression line is given by $K = -100.9S + 46.35$ with $R^2 = 0.9416$ and $P < 10^{-12}$.

(B) Plot showing the relationship between the fraction of strands (S) and the average degree (K). The regression line is given by $K = -76.67M + 66.05$ with $R^2 = 0.8769$ and $P < 10^{-5}$.

(C) Plot showing the relationship between the fraction of random coil (M) and the average degree (K). The regression line is given by $K = -76.67M + 66.05$ with $R^2 = 0.8769$ and $P < 10^{-5}$.
Proteins with functional annotations

Proteins without functional annotations

Average degree (K)

P < 10^{-12}
A. $K = 0.0186N + 19.09$
 $R^2 = 0.8553$
 $P < 10^{-6}$

B. $K = 0.0063N + 44.56$
 $R^2 = 0.1318$
 $P = 0.2329$

C. $K = 0.0063N + 44.56$
 $R^2 = 0.1318$
 $P = 0.2329$

D. $K = 0.0015N + 2.261$
 $R^2 = 0.7345$
 $P < 10^{-4}$

Figure 8