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Abstract

M otivation

Defining regulatory networks, linking transcription factors (TFS) to their targets, is a centrd
problem in post-genomic biology. One might imagine one could readily determine these
networks through inspection of gene expression data. However, the relationship between the
expression timecourse of a transcription factor and itstarget is not obvious (e.g. Smple
correlation over the timecourse), and current analys's methods, such as hierarchica clustering,
have not been very successful in deciphering them.

Results

Here we introduce an approach based on support vector machines (SVMs) to predict the targets
of atranscription factor by identifying subtle relationships between their expression praofiles. In
particular, we used SVMs to predict the regulatory targets for 36 transcription factorsin the
Saccharomyces cerevisiae genome based on the microarray expresson data from many different
physiologica conditions. We trained and tested our SVM on a dataset constructed to include a
sgnificant number of both positive and negetive examples, directly addressing data imbaance
issues. Thiswas norttrivid given that mog of the known experimentd information is only for
positives. Overdl, we found that 63% of our TF-target relationships were confirmed through
cross-vaidation. We further assessed the performance of our regulatory network identifications
by comparing them with the results from two recent genome-wide Chl P-chip experiments.
Overdl, we find the agreement between our results and these experiments is comparable to the
agreement (abeit low) between the two experiments. We find that this network has a delocdized
structure with respect to chromaosomal positioning, with a given transcription factor having

targets soread fairly uniformly across the genome.

Availability

The overdl network of the relaionshipsis available on the web a

http://bioinfo.mbb.yal e.edu/express on/echipchip .
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Introduction

Understanding of transcriptiona regulatory networks is crucia in the understanding of
fundamenta cdllular processes, such as growth contral, cdll-cycle progression, and devel opment,
aswdl| asdifferentiated cdlular function such as hormone secretion and cdll-cdl communication
(Alberts et al., 1994). On afundamentd level, transcription determines when and which genes
are expressed. The determination of factors that control expression can offer further ingght into
the misregulated expression that is common in many human diseases (Tupler et al., 1999; Ly et
al., 2000).

Much research has been done related to transcription factors (TFs): Some have tried to identify
transcription factorsin genomes using different methods, such as through sequence similarity or
gructurd comparisons (Riechmann et al., 2000; Wingender et al., 2001). Given known
transcription factors, others have tried to find their binding motifs in the regions upstream of
genes (Roulet et al., 1998; Krivanet al., 2001; Grabe, 2002; Halfonet al., 2002). For a
transcription factor whose binding motif is known, some researchers have started to predict gene
targets of transcription factors using genome-wide sequence searches of promoter regions
(Schuldiner et al., 1998; Zhu et al., 2002). Ladtly, others have tried to determine targets of a
transcription factor whose binding matif isunknown (K€l et al., 2001; Tanet al., 2001). This
find areaisthe research we pursue here.

The determination of target genes of transcription factors has been done with different
approaches. The most popular method is probably Chi P-chip, which combines the techniques of
chromatin immunoprecipitation and microarray hybridization. DNA that binds specificdly to a
transcription factor is purified and amplified. Genomic target loci are identified by comparative
hybridization of the immunoprecipitated and control DNA probesto a DNA microarray. Inyeast
researchers have used this method to identify the targets of transcription factors such as Gal4,
Stel2, MBP and SBP (Renet al., 2000; lyer et al., 2001).

In thiswork, we want to identify the targets of transcription factors usng computational
gpproaches. We focus on mining gene-expression data since these data provides adirect
measurement of the transcriptiona program in the cell. Past analyses of microarray data have
focused on clustering genes with Smilar expression profilesto predict protein function and
interaction (Eisenet al., 1998; Gerstein et al., 2000). However, the gene expression relationship
between a transcription factor and its targets is complex. In most cases, they do not have a
correlated expression profiles over atimecourse (see below). Sometimes, in fact, thereisalag
time between the expression of the transcription factor and its target (Qian et al., 2001).

To tackle this problem we employed support vector machines. Support vector machines (SVMs)
are aform of supervised machine learning. They use atraining set to learn in advance which

gene pairs have aregulaory relationship (Vapnik, 1998). Thefirst geneinaparisa

transcription factor, while the second is the target gene it potentialy regulates. After thetraining
stage, the machines determine probabilities for each TF-target pairing, and these probabilities,
after applying appropriate thresholds, can then be used to construct parts of aregulatory network.



Thiswork is focused on the budding yeast Saccharomyces cerevisiae. Recent work has
estimated that yeast has 6128 genes and 209 transcription factors (Riechmann et al., 2000;
Snyder et al., 2003). Given this, we have potentidly 1,280,752 (i.e. 209x6128) combinations.
Our task isto find which pairs among these 1,280,752 represent atrue regulatory relationship.

Methods

1. Support Vector Machines (SVMs)

In order to determine the relationship between transcription factors and their targets, we use
Support Vector Machines (SVMs). In generd, the SVM is a standard supervised machine-
learning agorithm, based on recent developments in satistical learning theory (Vapnik, 1998). It
is designed for pattern recognition and regression and used in fields such as writing recognition,
text categorization, and image classification (Vladimir et al., 1995; Joachims, 1998).

The support vector machine builds a hyperplane separating positive examples and negative
examplesin multiple-dimensiona space. Unfortunately, most real-world problems involve non
separable data for which there does not exist a hyperplane that successfully separates the positive
from the negative examples. One solution to the inseparability problem isto map the dataiinto a
higher-dimensiond space and define a separating hyperplane there. This higher-dimensond
gpaceis cdled the feature space. A kernd function of the dot product of the vectors used to
avoid representing the space explicitly. For details of support vector machine, please refer
(Burges, 1998; Vapnik, 1998).

The SVM cregtes the separating hyperplane from the labeled training data that can then be used
for prediction. Given that there are alarge number of transcription factors with known targets to
form atraining set, the SVM represents an appropriate agorithm for regulatory network
prediction.

Here we use an implementation of Support Vector Machine (SVM) by Brown et &. (2000)
(Brown et al., 2000). Our focusis not in developing the SVM methodology but seeing the degree
to which it can be applied to gene expression data.

2.  Encoding of Gene Expression Data

To encode our regulatory network prediction problem in aform suitable for training SVMs, we
congtruct TF-target pairs. These pair aknown transcription factor R and a putative target gene T
that may be regulated by this factor. For instance, the pairing (R=>T) means transcription factor

R regulates gene T. To connect this pairing with expresson information, we note that each gene
inthe pair is characterized by a set of expression experiments, which comprise datafrom

samples collected & various time points during the diauxic shift, the mitotic cell cycle,

sporulation, and heat shock (Spdlmanet al., 1998; Gasch et al., 2000). In total, we used 79 gene
expression data points to characterize each gene. Then putative TF-target pairing corresponds to
a 158-dement gene expresson vector, in which the first 79 expression data points are for the
transcription factor while the second 79 are for the regulated gene.



3.  Positive Training Examples

Positive examples were obtained from two transcription databases: TRANSFAC (Wingender et
al., 2001) and SCPD (Zhu et al., 1999). These two databases bring together information from the
biochemicd literature on transcription factors and their regulated genes. In this study, we only
include sequence-specific transcription factors and exclude generd transcription factors, such as
the RNA polymerases and the TATA-binding protein. In total, we used 175 TF-target pairings as
positive examples.

4. Negative Training examples

Aswith other supervised machine learning methods, negative examples are needed to train
properly. In our case, a negative example would be a gene pair that we know definitely has no
regulatory relationship. Note that thisis distinct from a gene pair about which we have no
positive information. Unfortunately, there are essentialy no papers on definitive negative
relationshipsin the biochemical literature. Consequently, we employed a number of Strategiesto
come up with appropriate negetive examples.

In the onset, one can easily make negative examples in anumber of ways. For example, two
genes encoding ribosomd proteins would have no regulatory relationship between (though they
may, of course, be regulated by the same factor). Another possibility is creating two artificid
gene-expression profiles usng randomized numbers. However, while easy to congtruct, such
examples may not be optima for machine learning. In principle, SYMsfind the boundary
between the positive and negative examples. If the negative examples are made too different
from the posgitive examples, the learned boundary isloose and thusit would be problematic to
detect subtle cases.

In the end, we congtructed negative examples in two ways. (i) For the transcription factors with
known binding Sites, we searched for these Stes genome-wide in the upstream regions of al
genes. Then for target gene T whose upsiream sequence contains no binding site for transcription
factor R, the pairing R?>T congtitutes a negative example. (ii) For transcription factors whose
binding sites are unknown, we randomly select another gene to construct a negative example. To
make sure that the randomly selected gene is not regulated by the transcription factor, the
expression profile of the second gene is permuted while keeping the expression profile of the
transcription factor constant.

In total, we congtructed 1750 negetive examples for training, which is 10 times the number of
positive examples. The reason for thisratio between the postive and negative examples will be
explained below.

5.  The Imbalance Problem
In machine learning, when there is greet disparity between the size of the positive and negative

training sets, one must take into consideration atraining difficulty called the imbaance problem
(Japkowicz, 2000; Japkowicz et al., 2002). This problem occurs when there is alarge difference



between postive and negative examples of the data. In such a stuation, the agorithm will
accurately predict the over-represented class, but its prediction of the under-represented class
will mostly be incorrect. In the extreme case, the under-represented class will be ignored. For
example, for a pogtive to negative ratio of 1:1000, an agorithm that aways predicts negative
will be correct 1000 times and incorrect only once. There are two approaches towards
overcoming the imbaance problem. (i) increasing the size of the under-represented set by
random resampling and (ii) decreasing the Size of the over-represented set by random removal of
its members (Japkowicz, 2000; An et al., 2001; Japkowicz et al., 2002).

The imbaance problem is encountered in our transcription-factor target prediction since (we
believe) there are definitely more negative transcriptiona rel ationships than positive ones. For
the yeast genome, even if one assumes that each transcription factor regulates ~200 genes, there
would be a 1:30 ratio between positive and negative examples. (These numbers are reasonable
given the numbers from some of the recent ChlP-chip experiments (Horak et al., 2002; Lee et
al., 2002).

The imbaance problem aso has implications for the relationships between threshold, coverage,
and error rate. (After fully developing our method, we illustrate some of these issues by showing
the different error rates and coverage valuesfor 1:1 and 1:10 training setsin Figure 3.)

6. Restricting the prediction to the subset from yTAFNET

In order to dleviate the imbaance problem, we decreased the prediction set from dl possible TF-
target pairings (i.e. 1280752 = 209 x 6128) to just the pairings suggested by the yTAFNET
database (Devaux et al., 2001).

We used aninitid set of potentid transcription factor-target gene pairs obtained from the
YTAFNET database. This database combines 72 published experiments and extracted the up- or
down-regulated target genes associated with different transcription factors in different states. In
most of the experimentsin this database, the transcription factors were knocked out and the
genes salected had significant changesin their expression. Note, these genes are not necessarily
the direct target of the transcription factor, but they are more likely to be the targets than
randomly sdected genes from the whole genome. We hoped this would reduce the imba ance
between the positive and negative examples. Since thisis a preiminary s, the sdlection criteria
did not have to be stringent and thus we chose the 1.5 fold set from yTAFNET, which showed
genes that were up- or down-regulated at least 1.5 fold. We sdlected 36 transcription factors for
prediction. Thisresulted in 46059 putative TF-target pairings that we assessed using our SVM.

Results

1. Expressionrelationship between transcription factor and targets is not
simultaneous

We assessed the problem of prediction of transcription targets based on their expression profiles.
Figure 1A-D shows four examples of expression profiles between transcription factors and their
regulatory targets. The black lines are the expression profiles for transcription factors while the



red lines are the corresponding regulated genes. At first glance, one can see there are no obvious
rel ationships between the expression profiles of a transcription factor and its regulated gene.

Looking closer, it seems that there exist some relationships between the expression profiles. For
example, In Figure 1A, from conditions 10 to 20, they have a Smultaneous relaionship, while
from conditions 44 to 60, the two profiles display an inverted rdationship. In Figure 1B, from
conditions 52 to 62, the two profiles show that the target gene has a shifted response compared
with the transcription factor.

In Figure 1D, from conditions 45 to 62, the expression profile of the target geneisan
exaggerated profile of the transcription factor. However, one cannot caculate the significance of
these relationships. Especidly, when these four positive examples are compared with the four
negative ones (Fig 1E-H), in which the two expression profiles do not have aregulatory
relationship.

To get aglobd view of the problem, we caculated correlation coefficients between the
expression profiles of transcription factors and their corresponding target genes for both the
positive and negative examplesin the training set. The digtributions, shown in Figure 2, are quite
broad, ranging from -0.2 to 1. It is clear that one cannot predict the regulatory relationship purdy
from the correlation of the expression profiles between the transcription factor and its target
gene. Interestingly, the ditribution for the positive examples displays shoulders both to the |eft
and right of the main pesak. This means that one has more chance to find pogtive relationships
than negative rdationship if two expresson profiles show high correlaion or high anti-
correlation.

2.  Evaluating the Performance in Cross-validated Fashion

While we can see that Smple correations are not sufficient to predict the regulatory relationship,
the gene expresson profiles should contain the information necessary to determine regulatory
networks. However, thisinformation is rather subtle. Machine learning approaches are useful
here, since they can find subtle relationships that are not immediately apparent and require no
explicit description of the connection between the input information and predicted relationship.

In thiswork 175 positive and 1750 negative examples were used for evaluation of the
performance of support vector machine. Each example conssts of apair of genesand is
characterized by 158 gene expresson levesin different experimental conditions. The

performance of the SVYM was evauated by three-fold cross-vdidation In other words, 117
positive and 1170 negative examples were used for training and the rest of the examples for
prediction. The random split between the training and prediction sets was repesated 10 times and
the average performance was caculated. Table 1 shows the results of cross-vaidation using five
different kernd functions. The sengtivity can be caculated as S'=TP/(TP+FN), while the
specificity is Sp=TN/(TN+FP). (The symbols TP, TN, FP, and FN are defined the number of true
positive, true negative, false positive and fa se negative obtained from the prediction,

respectively.)

The accuracy describes overall performance and is defined as A=(TP+TN)/(TP+TN+FP+FN).



One can see that the accuracies for powers 3 and 4 and radid kernd functions are smilar. Power
3isdightly better than others; the accuracy rate for this kernd function is 93%, and thisvaue
provides an evauation of the overdl prediction qudity including postive and negative

predictions.

Since the mgority of the predictions are from the negative samples, amore dtrict evauation of
the prediction is the precison (P=TP/(TP+FP)), which concentrates on the sample of predicted
postives. As 32 out of the 51 predicted positives are, in fact, true positives, the precison of the
prediction is 63%.

3.  The threshold for the prediction: ROC graph

We ds0 calculate the relationship between the prediction coverage and the error rate. The
prediction coverage is the percentage of the predicted postivesin the redl postives (i.e. the
sengtivity Sn.) The error rate E is percentage of the false positivesin the predicted positives, (i.e.
E=1-Sn) It iseasy to imagine that both the prediction coverage and error rate increase with the
decreasing threshold. If one wants to include as many true positives as possible, in the mean
time, much more fase postives will occur in the prediction. Normally one needsto find the
optima point that has the minimal amount of wrong predictions. However, in our case, we are
more interested in the low error rate than in the high coverage. In other words, the quality of the
prediction is more important than the coverage.

In Fig. 3 the coverage versus the error rate is shown for our prediction. Thisgraphisin the
standard form of a ROC (receiver-operator characteristic) plot. Each point on this graph
represents a threshold for positive and negative classfication. An optimd threshold should have
high prediction coverage and alow error rate. A threshold of 0.0 was used for the further work.

3. Genome-wide prediction of yeast transcription targets

For the genome-wide prediction of regulatory targets of yeast transcription factors, we used al
175 positive and 1750 negative examples as atraining set. The set of 46059 possible TF-target
pairings to perform predictions on was obtained from the yTAFNET database (see methods). For
36 transcription factors, atotal of 3419 TF-target pairings were found by our prediction.

Overdl gatigtics for the predictions are presented in Tables 2 and 3. Table 2 ligts these 36
transcription factors dong with the function and number of targets they control. The average
number of targets per transcription factor is ~93. Table 3 presents the overall Satistics from
another perspective. The table shows al the gene targetsin the study that are controlled by 10 or
more transcription factors. The average number of transcription factors per target is~1.8.

4. Overall Network Structure

In table 4, we show some examples of our predictions. We attempt to depict the overal network
predicted in Figure 4. However, due to the large number of predicted relationships, it is only
possible to show asmall fraction of the total relationshipsin the figure. The entire network can

be obtained from our website hitp://bioinfo.mbb.ya e.edu/express on/echipchip .



Fndly, figure 5 shows the relative chromosomal localization of the targets of 10 transcription
factors (randomly selected) across the genome. For the most part, thereis an even digtribution of
targets for each factor, which corroborates with data from ChiP-chip studies (Horak et al., 2002;
Leeet al., 2002).

5. Comparison with ChlP-chip results

To further evaluate our prediction, we compared our results with two recent genome-wide
experiments, which determined the transcription-factor targets with the ChiP-chip approach
(Horak et al., 2002; Lee et al., 2002). In Figure 6A, we present the overlap of the transcription
factors shared between two experimenta datasets and our prediction set intermsof aVenn
diagram. Note that the Horak and L ee datasets only have two transcription factors in common.
The overlap between our prediction set and the Lee dataset is 18 transcription factors, and there
is only one common transcription factor for both experimental datasets and our prediction st.

Based on the (relatively few) shared transcription factors, we andyzed the targets and TF-target
relationships that were common between the experimenta datasets and our predictions (Figure
6B). In generd, there is not alarge overlap. Between the two experimental ChiP-chip datasets,
there were only 17 common TF-target relationships, accounting for gpproximately 3% of al the
determined relationships (where the number of determined rdationshipsis based on the smaller
dataset). On the other hand, our computationa predictions have an overlap of 70 TF-target
relationships with Lee dataset and 7 with Horak dataset, which accounts for approximately 6%
and 4% coverage of these dataset. There were no TF-target relaionships that were congstently
found in al three data sources. In summary, we found the agreement between our results and two
experiments is comparable to the agreement (albeit low) between the two experiments.

Discussion and Conclusion

In our analys's, we develop a machine learning approach to decipher the complex rlationship
between atranscription factor and its target. Genome-scale analyses of transcription factor

targets are difficult and both experimenta and computationa techniques are in the processes of
refinement. From our predictions, for the 36 transcription factors, we predict atota of 3419
targets. On average, each transcription factor controls approximately 93 targets and each target is
controlled by 1.8 transcription factors. This suggests that the lack of a clear relationship between
transcription factor and their targets as shown in Figure 1 can perhaps be due to the fact that most
targets are not controlled by one single transcription factor. However, the fact that one
transcription factor controls so many targets points to the importance of studying these
relationships.

Other in silico approaches with regulatory target predictions use binding site information.
However, shared tertiary structure is often the determinant for binding. Thisis not predicted

using sequence information. Furthermore, for many transcription factors, binding motifs are yet

to be determined. Therefore, our method provides an additiond perspective that does not require



as much derived information.

Aswith many bioinformatic analyses, there isredtriction based on theinitid dataset, on which
predictions are based. Our accuracy rate would definitely improve with incorporation of more
microarray data as with the addition of more pairs of transcription factor and targets.
Furthermore, the 63% cross vaidation rate with known relationships provides a measure for our
andyss. However, it isimportant to note that this number assumes that the known relationships
are accurate and does not include undiscovered, unannotated true positives. From our initia
predictions, we expect coverage of 36% with an error rate of less than 2%.

The generated predictions from our analysis are useful for researchers as apreliminary target list
for their transcription factor of interest. Actud relationships need to be verified with
experimental work. However, thiswork provides a new method of transcription factor target
prediction that will be useful with the growing amount of microarray data.and knowledge of
transcription factors. Quick predictions can be made from existing microarrary experiments and
will be a useful tool as afirst step in transcription factor target prediction.

Recent sudiesby Leeet d. (Leeet al., 2002), Renet d (Renet al., 2000), and lyer et d. (lyer et
al., 2001) have examined the relationship between transcription factor and their targets usng the
Chl P-chip approach. Our anadysis examined the consequences of gene control using expression
levels. However, there are only smal overlaps between the different experimental datasets and
with our predictions. This is most likely due to the tempora nature of transcription factors. For
example, different transcription factors can compete for the same target gene. Furthermore, a
different timesin the cdl cycle, there are differing environments with different transcription

factors present.

Asfuture work is done, the combination of in vitro and in slico techniques will be vauablein
determining the relationship between transcription factors and ther targets. Consensus data from
different experiments will increase the fidelity of the predictions. As different groups study more
common transcription factors and with consideration of the point in cdll cycle and the state of the
cel, researchers will be able to better understand the control of genes within the cdll. With the
growing library of expression andyses and other data sources, computationd techniques will
provide a more complex description of the relationship.
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Figure Captions

Figure 1. Expression Profiles of Transcription Factor and Target Pairs
Sample expresson profiles showing different control reaionships are shown in thisfigure. The
transcription factor profiles are shown in black and the gene target in red.

Sections (A) to (D) show known positive relationships while sections (E) to (G) show known
negative relationships. (A) YKL112W controls Y ALO38W amogt directly for the first haf and
inversdly for the second half. (B) Y KRO99W controls Y BRO93C with atime shift relaionship
between points 50 and 60. (C) YELO009C seems to control Y MR300C inversely from points 20-
40 but directly from 40 to 70. (D) YPLO75W seems to control the dope of Y CR0O12W from 40 to
60. (E) YKL112W seemsto have amixed inverse and direct relaionship with Y PR124W
throughout the profile. (F) YDL106C seemsto have agenerd correlation with YLLO39C ona
macroscopic scale, but the detailed changes are very different. (G) YELOO09C seemsto have

broad correlations with Y OR209C, perhaps controlled by smilar processes, but there is very low
correlation of the details. (H) YLR131C has no clear relationship with Y IRO09W.

Figure 2. Correlation-Coefficient Distributions

In order to determine genera relationships between transcription factors and their targets, we
caculated the distribution of corrdlation coefficients of the known positive examples compared it
with the digtribution based on negetive rdationships. The distribution of positive correationsis
shown in asolid line and shows two shoulders; the distribution of negative corrdationsis shown
in adotted line and has anear Guassian distribution.

Figure 3. ROC graph: Prediction Coverage vs. Error Rate

Prediction coverage is the percentage of predicted positives that are true postives while the error
rate is the percentage of predicted positive that are fase pogtive. With ahigher coverage rate,
there would be an associated higher error rate. In the graph, two different plots are given,
depending on the ratio of the Size of the pogtive to negative training examples -- what we call

the positive-to-negative-training ratio . One plot has aratio of 1:1 while the other has 1:10. Each
point on the graph represents a different threshold setting. For the experiment, we chose a
threshold setting of 0.0 with a positive-to-negative-training ratio of 1:10, which is shown by the
darkened circle. This corresponded with a coverage rate of approximately 36% and an error rate
of approximately 1.8%.

Figure 4. Overall Network

The complex interconnected network of the transcription factors and al their targets. Because the
network is dominated by transcription factors targets that do not provide further control with
relatively few transcription factors, there appears to be severad centers of control with many
targets.

Figure 5. Chromosomal Position

Positions of genes controlled by ten transcription factors. For each transcription factor, their
targets are colored on the chromosome map of the yeast genome. Chromosome IV is divided into
two lines: the first line contains position from 1 to 800 kb and the second shows position from

800 kb on. This provides an overdl chromosome view of transcription control.



Figure 6. Comparison of two ChlP-chip datasets with our predictions
(A) The sharing of the transcription factors that were used in the three studies. (B) The number

of TF-target pairs that were shared among the three datasets. This only included the predictions
from the datasets that shared common transcription factors shown in (A).

Tables

Table 1. Three-fold cross-validation using five different kernel functions.
For each kernel function (powers 1 to 4 and radid), true positives, false pogitives, true negatives,

false negatives, sengtivity, specificity, and precison are shown in the different columns. The

methods of calculation are described in the text.

Table 2. Transcription factors in the study.

Thistable lists the 36 transcription factors used this study. For each transcription factor, the
function and the number of predicted targets are shown in the columns. The average number of
targets per transcription factor is gpproximately 93.

Table 3. Top transcription factor targets.

This table shows the top transcription factor targets that are controlled by more than 10
transcription factors. The average number of transcription factors for each target is
approximately 1.8.

Table 4. Predicted TF-target examples.
The firgt column is the transcription factor, second column isits target, third column isthe
prediction scores. (The entire list can be obtained from our website.)
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Table 1

TP TN FP FN Sensitivity Specificity Precision
Power =1 29 467 113 29 0.50 0.81 0.78
Power = 2 36 536 44 22 0.62 0.92 0.90
Power=3 | 32 561 19 26 0.55 0.97 0.93
Power=4 | 22 568 12 36 0.38 0.98 0.92
Radial 9 579 1 49 0.16 1.00 0.92
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Table 2

Transcription Number of Transcription  Number of
Factor Targets Factor Targets
STE12 1032 SIN3 37
RAP1 306 SIR2 25
ZAP1 286 SIR3 18
RTG1 271 HIR2 16
SOK2 194 GLN3 11
YAP1 189 YAP3 11
RPD3 135 MBP1 9
GCN5 105 GCN4 7
GCR1 104 SWI6 7
TUP1 71 SWI5 6
PDR1 68 ARGR1 5
PPR1 66 RGT1 4
PHO4 65 GAL4 3
SWi4 63 STB4 2

SIR4 63 YAP7 2
RPN4 59 CATS8 1
HDA1 55 TEC1 1
SSN6 47 PDR3 1

AVERAGE = 92.92
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Table 3

Target Number of TF Target Number of TF
ZRT1 20 HSP150 1
YGP1 16 ALDG6 1
HXT2 15 PHO5 1
PHO12 14 FAA3 10
HIS4 14 TDH3 10
FBP1 13 ASN1 10
SIP4 12 CLN2 10
ADE12 12 SuUC2 10
ARG5,6 12 ILV3 10
PCK1 12 GlIc2 10
HXT5 11 TYE7 10



Table 4 on next page



Table 4

Transcription Transcription

TF Target Score TF Target Score

Factor Factor
RTG1 FET3 18.83 RPD3 ALDG6 6.965
RAP1 RPS1A 18.48 GCR1 FET3 6.601
SIR4 GPM1 11.27 YAP3 PGK1 6.591
SIR4 PGK1 10.66 RPN4 PDC1 6.473
RAP1 RPL40B 9.301 RTG1 HXT6 6.438
PDR1 PDC1 9.096 RPN4 PGK1 6.437
ZAP1 FET3 9.007 SOK2 ALDG6 6.325
RPD3 GPM1 8.65 GCR1 ALDG6 6.29
ZAP1 PGK1 8.377 RTG1 YGP1 6.222
ZAP1 GPM1 8.231 RAP1 APL3 6.011
GCR1 PDC1 8.2 RTG1 ADE5,7 6.006
ZAP1 PDC1 8.159 RAP1 RPS4A 5.994
RAP1 RPL26B 8.13 TUP1 PGK1 5.882
STE12 GPM1 8.089 RAP1 PHO12 5.867
YAP1 FET3 8.084 PHO4 RPL25 5.804
YAP1 GPM1 7.994 HIR2 TDH3 5.752
PDR1 ALD6 7.751 ZAP1 ALDG6 5.747
RTG1 HXT7 7.707 TUP1 PDC1 5.711
SIR4 TDH3 7.56 RPN4 GPM1 5.685
STE12 PDC1 7.477 RAP1 RPS9A 5.625
RTG1 ACS2 7.368 PDR1 YEF3 5.556
RAP1 RPL7A 7.274 TUP1 FET3 5.484
ZAP1 ENO2 7.105 ZAP1 TDHS3 5.479
SSN6 FET3 7.07 ZAP1 ACS2 5472

GCR1 GPM1 7.02 SIR4 RPL21B 5.458





