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Abstract 
 
Motivation 
Defining regulatory networks, linking transcription factors (TFs) to their targets, is a central 
problem in post-genomic biology. One might imagine one could readily determine these 
networks through inspection of gene expression data. However, the relationship between the 
expression timecourse of a transcription factor and its target is not obvious (e.g. simple 
correlation over the timecourse), and current analysis methods, such as hierarchical clustering, 
have not been very successful in deciphering them.  
Results 
Here we introduce an approach based on support vector machines (SVMs) to predict the targets 
of a transcription factor by identifying subtle relationships between their expression profiles. In 
particular, we used SVMs to predict the regulatory targets for 36 transcription factors in the 
Saccharomyces cerevisiae genome based on the microarray expression data from many different 
physiological conditions. We trained and tested our SVM on a dataset constructed to include a 
significant number of both positive and negative examples, directly addressing data imbalance 
issues. This was non-trivial given that most of the known experimental information is only for 
positives. Overall, we found that 63% of our TF-target relationships were confirmed through 
cross-validation. We further assessed the performance of our regulatory network identifications 
by comparing them with the results from two recent genome-wide ChIP-chip experiments. 
Overall, we find the agreement between our results and these experiments is comparable to the 
agreement (albeit low) between the two experiments. We find that this network has a delocalized 
structure with respect to chromosomal positioning, with a given transcription factor having 
targets spread fairly uniformly across the genome.  
Availability 
The overall network of the relationships is available on the web at 
http://bioinfo.mbb.yale.edu/expression/echipchip . 
Contact: 
Mark.Gerstein@yale.edu 
 
 



 
Introduction 

 
Understanding of transcriptional regulatory networks is crucial in the understanding of 
fundamental cellular processes, such as growth control, cell-cycle progression, and development, 
as well as differentiated cellular function such as hormone secretion and cell-cell communication 
(Alberts et al., 1994). On a fundamental level, transcription determines when and which genes 
are expressed. The determination of factors that control expression can offer further insight into 
the misregulated expression that is common in many human diseases (Tupler et al., 1999; Ly et 
al., 2000).  
  
Much research has been done related to transcription factors (TFs): Some have tried to identify 
transcription factors in genomes using different methods, such as through sequence similarity or 
structural comparisons (Riechmann et al., 2000; Wingender et al., 2001). Given known 
transcription factors, others have tried to find their binding motifs in the regions upstream of 
genes (Roulet et al., 1998; Krivan et al., 2001; Grabe, 2002; Halfon et al., 2002). For a 
transcription factor whose binding motif is known, some researchers have started to predict gene 
targets of transcription factors using genome-wide sequence searches of promoter regions 
(Schuldiner et al., 1998; Zhu et al., 2002). Lastly, others have tried to determine targets of a 
transcription factor whose binding motif is unknown (Kel et al., 2001; Tan et al., 2001). This 
final area is the research we pursue here. 
 
The determination of target genes of transcription factors has been done with different 
approaches. The most popular method is probably ChIP-chip, which combines the techniques of 
chromatin immunoprecipitation and microarray hybridization. DNA that binds specifically to a 
transcription factor is purified and amplified. Genomic target loci are identified by comparative 
hybridization of the immunoprecipitated and control DNA probes to a DNA microarray.  In yeast 
researchers have used this method to identify the targets of transcription factors such as Gal4, 
Ste12, MBP and SBP (Ren et al., 2000; Iyer et al., 2001). 
 
In this work, we want to identify the targets of transcription factors using computational 
approaches. We focus on mining gene-expression data since these data provides a direct 
measurement of the transcriptional program in the cell. Past analyses of microarray data have 
focused on clustering genes with similar expression profiles to predict protein function and 
interaction (Eisen et al., 1998; Gerstein et al., 2000). However, the gene expression relationship 
between a transcription factor and its targets is complex. In most cases, they do not have a 
correlated expression profiles over a timecourse (see below). Sometimes, in fact, there is a lag 
time between the expression of the transcription factor and its target (Qian et al., 2001). 
 
To tackle this problem we employed support vector machines.  Support vector machines (SVMs) 
are a form of supervised machine learning. They use a training set to learn in advance which 
gene pairs have a regulatory relationship (Vapnik, 1998). The first gene in a pair is a 
transcription factor, while the second is the target gene it potentially regulates. After the training 
stage, the machines determine probabilities for each TF-target pairing, and these probabilities, 
after applying appropriate thresholds, can then be used to construct parts of a regulatory network.  
 



This work is focused on the budding yeast Saccharomyces cerevisiae.  Recent work has 
estimated that yeast has 6128 genes and 209 transcription factors (Riechmann et al., 2000; 
Snyder et al., 2003). Given this, we have potentially 1,280,752 (i.e. 209x6128) combinations. 
Our task is to find which pairs among these 1,280,752 represent a true regulatory relationship.  
 
Methods 

 
1. Support Vector Machines (SVMs) 
 
In order to determine the relationship between transcription factors and their targets, we use 
Support Vector Machines (SVMs). In general, the SVM is a standard supervised machine-
learning algorithm, based on recent developments in statistical learning theory (Vapnik, 1998). It 
is designed for pattern recognition and regression and used in fields such as writing recognition, 
text categorization, and image classification (Vladimir et al., 1995; Joachims, 1998). 
 
The support vector machine builds a hyperplane separating positive examples and negative 
examples in multiple-dimensional space. Unfortunately, most real-world problems involve non-
separable data for which there does not exist a hyperplane that successfully separates the positive 
from the negative examples. One solution to the inseparability problem is to map the data into a 
higher-dimensional space and define a separating hyperplane there. This higher-dimensional 
space is called the feature space.  A kernel function of the dot product of the vectors used to 
avoid representing the space explicitly. For details of support vector machine, please refer 
(Burges, 1998; Vapnik, 1998). 
 
The SVM creates the separating hyperplane from the labeled training data that can then be used 
for prediction. Given that there are a large number of transcription factors with known targets to 
form a training set, the SVM represents an appropriate algorithm for regulatory network 
prediction. 
 
Here we use an implementation of Support Vector Machine (SVM) by Brown et al. (2000) 
(Brown et al., 2000). Our focus is not in developing the SVM methodology but seeing the degree 
to which it can be applied to gene expression data.  
 
 

2. Encoding of Gene Expression Data 
 

To encode our regulatory network prediction problem in a form suitable for training SVMs, we 
construct TF-target pairs. These pair a known transcription factor R and a putative target gene T 
that may be regulated by this factor. For instance, the pairing (R=>T) means transcription factor 
R regulates gene T. To connect this pairing with expression information, we note that each gene 
in the pair is characterized by a set of expression experiments, which comprise data from 
samples collected at various time points during the diauxic shift, the mitotic cell cycle, 
sporulation, and heat shock (Spellman et al., 1998; Gasch et al., 2000). In total, we used 79 gene 
expression data points to characterize each gene. Then putative TF-target pairing corresponds to 
a 158-element gene expression vector, in which the first 79 expression data points are for the 
transcription factor while the second 79 are for the regulated gene.  



 
3. Positive Training Examples 

 
Positive examples were obtained from two transcription databases: TRANSFAC (Wingender et 
al., 2001) and SCPD (Zhu et al., 1999). These two databases bring together information from the 
biochemical literature on transcription factors and their regulated genes. In this study, we only 
include sequence-specific transcription factors and exclude general transcription factors, such as 
the RNA polymerases and the TATA-binding protein. In total, we used 175 TF-target pairings as 
positive examples. 
 
4. Negative Training examples 

 
As with other supervised machine learning methods, negative examples are needed to train 
properly. In our case, a negative example would be a gene pair that we know definitely has no 
regulatory relationship. Note that this is distinct from a gene pair about which we have no 
positive information. Unfortunately, there are essentially no papers on definitive negative 
relationships in the biochemical literature. Consequently, we employed a number of strategies to 
come up with appropriate negative examples.  
 
In the onset, one can easily make negative examples in a number of ways. For example, two 
genes encoding ribosomal proteins would have no regulatory relationship between (though they 
may, of course, be regulated by the same factor). Another possibility is creating two artificial 
gene-expression profiles using randomized numbers. However, while easy to construct, such 
examples may not be optimal for machine learning. In principle, SVMs find the boundary 
between the positive and negative examples. If the negative examples are made too different 
from the positive examples, the learned boundary is loose and thus it would be problematic to 
detect subtle cases.  
 
In the end, we constructed negative examples in two ways: (i) For the transcription factors with 
known binding sites, we searched for these sites genome-wide in the upstream regions of all 
genes. Then for target gene T whose upstream sequence contains no binding site for transcription 
factor R, the pairing R?>T constitutes a negative example. (ii) For transcription factors whose 
binding sites are unknown, we randomly select another gene to construct a negative example. To 
make sure that the randomly selected gene is not regulated by the transcription factor, the 
expression profile of the second gene is permuted while keeping the expression profile of the 
transcription factor constant.   
 
In total, we constructed 1750 negative examples for training, which is 10 times the number of 
positive examples. The reason for this ratio between the positive and negative examples will be 
explained below. 

 
5. The Imbalance Problem 

 
In machine learning, when there is great disparity between the size of the positive and negative 
training sets, one must take into consideration a training difficulty called the imbalance problem 
(Japkowicz, 2000; Japkowicz et al., 2002). This problem occurs when there is a large difference 



between positive and negative examples of the data. In such a situation, the algorithm will 
accurately predict the over-represented class, but its prediction of the under-represented class 
will mostly be incorrect. In the extreme case, the under-represented class will be ignored. For 
example, for a positive to negative ratio of 1:1000, an algorithm that always predicts negative 
will be correct 1000 times and incorrect only once. There are two approaches towards 
overcoming the imbalance problem. (i) increasing the size of the under-represented set by 
random resampling and (ii) decreasing the size of the over-represented set by random removal of 
its members (Japkowicz, 2000; An et al., 2001; Japkowicz et al., 2002). 
 
The imbalance problem is encountered in our transcription-factor target prediction since (we 
believe) there are definitely more negative transcriptional relationships than positive ones. For 
the yeast genome, even if one assumes that each transcription factor regulates ~200 genes, there 
would be a 1:30 ratio between positive and negative examples. (These numbers are reasonable 
given the numbers from some of the recent ChIP-chip experiments (Horak et al., 2002; Lee et 
al., 2002). 
 
The imbalance problem also has implications for the relationships between threshold, coverage, 
and error rate. (After fully developing our method, we illustrate some of these issues by showing 
the different error rates and coverage values for 1:1 and 1:10 training sets in Figure 3.)  
 
6. Restricting the prediction to the subset from yTAFNET  
 
In order to alleviate the imbalance problem, we decreased the prediction set from all possible TF-
target pairings (i.e. 1280752 = 209 x 6128) to just the pairings suggested by the yTAFNET 
database (Devaux et al., 2001). 
 
We used an initial set of potential transcription factor-target gene pairs obtained from the 
yTAFNET database. This database combines 72 published experiments and extracted the up- or 
down-regulated target genes associated with different transcription factors in different states. In 
most of the experiments in this database, the transcription factors were knocked out and the 
genes selected had significant changes in their expression. Note, these genes are not necessarily 
the direct target of the transcription factor, but they are more likely to be the targets than 
randomly selected genes from the whole genome. We hoped this would reduce the imbalance 
between the positive and negative examples. Since this is a preliminary set, the selection criteria 
did not have to be stringent and thus we chose the 1.5 fold set from yTAFNET, which showed 
genes that were up- or down-regulated at least 1.5 fold. We selected 36 transcription factors for 
prediction. This resulted in 46059 putative TF-target pairings that we assessed using our SVM. 
  
Results 

 
1. Expression relationship between transcription factor and targets is not 
simultaneous 
 
We assessed the problem of prediction of transcription targets based on their expression profiles. 
Figure 1A-D shows four examples of expression profiles between transcription factors and their 
regulatory targets. The black lines are the expression profiles for transcription factors while the 



red lines are the corresponding regulated genes. At first glance, one can see there are no obvious 
relationships between the expression profiles of a transcription factor and its regulated gene. 
 
Looking closer, it seems that there exist some relationships between the expression profiles. For 
example, In Figure 1A, from conditions 10 to 20, they have a simultaneous relationship, while 
from conditions 44 to 60, the two profiles display an inverted relationship. In Figure 1B, from 
conditions 52 to 62, the two profiles show that the target gene has a shifted response compared 
with the transcription factor. 
 
In Figure 1D, from conditions 45 to 62, the expression profile of the target gene is an 
exaggerated profile of the transcription factor. However, one cannot calculate the significance of 
these relationships. Especially, when these four positive examples are compared with the four 
negative ones (Fig 1E-H), in which the two expression profiles do not have a regulatory 
relationship.  
  
To get a global view of the problem, we calculated correlation coefficients between the 
expression profiles of transcription factors and their corresponding target genes for both the 
positive and negative examples in the training set. The distributions, shown in Figure 2, are quite 
broad, ranging from -0.2 to 1. It is clear that one cannot predict the regulatory relationship purely 
from the correlation of the expression profiles between the transcription factor and its target 
gene. Interestingly, the distribution for the positive examples displays shoulders both to the left 
and right of the main peak. This means that one has more chance to find positive relationships 
than negative relationship if two expression profiles show high correlation or high anti-
correlation.  
 
2. Evaluating the Performance in Cross-validated Fashion  
 
While we can see that simple correlations are not sufficient to predict the regulatory relationship, 
the gene expression profiles should contain the information necessary to determine regulatory 
networks. However, this information is rather subtle.  Machine learning approaches are useful 
here, since they can find subtle relationships that are not immediately apparent and require no 
explicit description of the connection between the input information and predicted relationship.  
 
In this work 175 positive and 1750 negative examples were used for evaluation of the 
performance of support vector machine. Each example consists of a pair of genes and is 
characterized by 158 gene expression levels in different experimental conditions. The 
performance of the SVM was evaluated by three-fold cross-validation. In other words, 117 
positive and 1170 negative examples were used for training and the rest of the examples for 
prediction. The random split between the training and prediction sets was repeated 10 times and 
the average performance was calculated. Table 1 shows the results of cross-validation using five 
different kernel functions. The sensitivity can be calculated as Sn=TP/(TP+FN), while the 
specificity is Sp=TN/(TN+FP). (The symbols TP, TN, FP, and FN are defined the number of true 
positive, true negative, false positive and false negative obtained from the prediction, 
respectively.)  
 
The accuracy describes overall performance and is defined as A=(TP+TN)/(TP+TN+FP+FN). 



One can see that the accuracies for powers 3 and 4 and radial kernel functions are similar. Power 
3 is slightly better than others; the accuracy rate for this kernel function is 93%, and this value 
provides an evaluation of the overall prediction quality including positive and negative 
predictions.  
 
Since the majority of the predictions are from the negative samples, a more strict evaluation of 
the prediction is the precision (P=TP/(TP+FP)), which concentrates on the sample of predicted 
positives. As 32 out of the 51 predicted positives are, in fact, true positives, the precision of the 
prediction is 63%.  
 
3. The threshold for the prediction: ROC graph 
 
We also calculate the relationship between the prediction coverage and the error rate. The 
prediction coverage is the percentage of the predicted positives in the real positives (i.e. the 
sensitivity Sn.) The error rate E is percentage of the false positives in the predicted positives, (i.e. 
E=1-Sn.) It is easy to imagine that both the prediction coverage and error rate increase with the 
decreasing threshold. If one wants to include as many true positives as possible, in the mean 
time, much more false positives will occur in the prediction. Normally one needs to find the 
optimal point that has the minimal amount of wrong predictions. However, in our case, we are 
more interested in the low error rate than in the high coverage. In other words, the quality of the 
prediction is more important than the coverage. 
 
In Fig. 3 the coverage versus the error rate is shown for our prediction. This graph is in the 
standard form of a ROC (receiver-operator characteristic) plot. Each point on this graph 
represents a threshold for positive and negative classification. An optimal threshold should have 
high prediction coverage and a low error rate. A threshold of 0.0 was used for the further work. 

 
3. Genome-wide prediction of yeast transcription targets  
 
For the genome-wide prediction of regulatory targets of yeast transcription factors, we used all 
175 positive and 1750 negative examples as a training set. The set of 46059 possible TF-target 
pairings to perform predictions on was obtained from the yTAFNET database (see methods). For 
36 transcription factors, a total of 3419 TF-target pairings were found by our prediction.  
 
Overall statistics for the predictions are presented in Tables 2 and 3. Table 2 lists these 36 
transcription factors along with the function and number of targets they control. The average 
number of targets per transcription factor is ~93. Table 3 presents the overall statistics from 
another perspective. The table shows all the gene targets in the study that are controlled by 10 or 
more transcription factors. The average number of transcription factors per target is ~1.8.  
 
4. Overall Network Structure  
 
In table 4, we show some examples of our predictions. We attempt to depict the overall network 
predicted in Figure 4. However, due to the large number of predicted relationships, it is only 
possible to show a small fraction of the total relationships in the figure. The entire network can 
be obtained from our website http://bioinfo.mbb.yale.edu/expression/echipchip .  



 
Finally, figure 5 shows the relative chromosomal localization of the targets of 10 transcription 
factors (randomly selected) across the genome.  For the most part, there is an even distribution of 
targets for each factor, which corroborates with data from ChIP-chip studies (Horak et al., 2002; 
Lee et al., 2002). 
  
 
5. Comparison with ChIP-chip results 
 
To further evaluate our prediction, we compared our results with two recent genome-wide 
experiments, which determined the transcription-factor targets with the ChIP-chip approach 
(Horak et al., 2002; Lee et al., 2002). In Figure 6A, we present the overlap of the transcription 
factors shared between two experimental datasets and our prediction set in terms of a Venn 
diagram. Note that the Horak and Lee datasets only have two transcription factors in common. 
The overlap between our prediction set and the Lee dataset is 18 transcription factors, and there 
is only one common transcription factor for both experimental datasets and our prediction set.  
 
Based on the (relatively few) shared transcription factors, we analyzed the targets and TF-target 
relationships that were common between the experimental datasets and our predictions (Figure 
6B). In general, there is not a large overlap. Between the two experimental ChIP-chip datasets, 
there were only 17 common TF-target relationships, accounting for approximately 3% of all the 
determined relationships (where the number of determined relationships is based on the smaller 
dataset). On the other hand, our computational predictions have an overlap of 70 TF-target 
relationships with Lee dataset and 7 with Horak dataset, which accounts for approximately 6% 
and 4% coverage of these dataset. There were no TF-target relationships that were consistently 
found in all three data sources. In summary, we found the agreement between our results and two 
experiments is comparable to the agreement (albeit low) between the two experiments. 
 
 
Discussion and Conclusion 

 
In our analysis, we develop a machine learning approach to decipher the complex relationship 
between a transcription factor and its target. Genome-scale analyses of transcription factor 
targets are difficult and both experimental and computational techniques are in the processes of 
refinement. From our predictions, for the 36 transcription factors, we predict a total of 3419 
targets. On average, each transcription factor controls approximately 93 targets and each target is 
controlled by 1.8 transcription factors. This suggests that the lack of a clear relationship between 
transcription factor and their targets as shown in Figure 1 can perhaps be due to the fact that most 
targets are not controlled by one single transcription factor. However, the fact that one 
transcription factor controls so many targets points to the importance of studying these 
relationships.  
 
Other in silico approaches with regulatory target predictions use binding site information. 
However, shared tertiary structure is often the determinant for binding. This is not predicted 
using sequence information. Furthermore, for many transcription factors, binding motifs are yet 
to be determined. Therefore, our method provides an additional perspective that does not require 



as much derived information.  
 
As with many bioinformatic analyses, there is restriction based on the initial dataset, on which 
predictions are based. Our accuracy rate would definitely improve with incorporation of more 
microarray data as with the addition of more pairs of transcription factor and targets. 
Furthermore, the 63% cross validation rate with known relationships provides a measure for our 
analysis. However, it is important to note that this number assumes that the known relationships 
are accurate and does not include undiscovered, unannotated true positives. From our initial 
predictions, we expect coverage of 36% with an error rate of less than 2%. 
 
The generated predictions from our analysis are useful for researchers as a preliminary target list 
for their transcription factor of interest. Actual relationships need to be verified with 
experimental work. However, this work provides a new method of transcription factor target 
prediction that will be useful with the growing amount of microarray data and knowledge of 
transcription factors. Quick predictions can be made from existing microarrary experiments and 
will be a useful tool as a first step in transcription factor target prediction. 
 
Recent studies by Lee et al. (Lee et al., 2002), Ren et al (Ren et al., 2000), and Iyer et al. (Iyer et 
al., 2001) have examined the relationship between transcription factor and their targets using the 
ChIP-chip approach. Our analysis examined the consequences of gene control using expression 
levels. However, there are only small overlaps between the different experimental datasets and 
with our predictions. This is most likely due to the temporal nature of transcription factors. For 
example, different transcription factors can compete for the same target gene. Furthermore, at 
different times in the cell cycle, there are differing environments with different transcription 
factors present.  
 
As future work is done, the combination of in vitro and in silico techniques will be valuable in 
determining the relationship between transcription factors and their targets. Consensus data from 
different experiments will increase the fidelity of the predictions. As different groups study more 
common transcription factors and with consideration of the point in cell cycle and the state of the 
cell, researchers will be able to better understand the control of genes within the cell. With the 
growing library of expression analyses and other data sources, computational techniques will 
provide a more complex description of the relationship.  
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Figure Captions 
 
Figure 1. Expression Profiles of Transcription Factor and Target Pairs  
Sample expression profiles showing different control relationships are shown in this figure. The 
transcription factor profiles are shown in black and the gene target in red. 
Sections (A) to (D) show known positive relationships while sections (E) to (G) show known 
negative relationships. (A) YKL112W controls YAL038W almost directly for the first half and 
inversely for the second half. (B) YKR099W controls YBR093C with a time shift relationship 
between points 50 and 60. (C) YEL009C seems to control YMR300C inversely from points 20-
40 but directly from 40 to 70. (D) YPL075W seems to control the slope of YCR012W from 40 to 
60. (E) YKL112W seems to have a mixed inverse and direct relationship with YPR124W 
throughout the profile. (F) YDL106C seems to have a general correlation with YLL039C on a 
macroscopic scale, but the detailed changes are very different. (G) YEL009C seems to have 
broad correlations with YOR209C, perhaps controlled by similar processes, but there is very low 
correlation of the details. (H) YLR131C has no clear relationship with YIR009W. 
 
Figure 2. Correlation-Coefficient Distributions 
In order to determine general relationships between transcription factors and their targets, we 
calculated the distribution of correlation coefficients of the known positive examples compared it 
with the distribution based on negative relationships. The distribution of positive correlations is 
shown in a solid line and shows two shoulders; the distribution of negative correlations is shown 
in a dotted line and has a near Guassian distribution. 
 
Figure 3. ROC graph: Prediction Coverage vs. Error Rate  

Prediction coverage is the percentage of predicted positives that are true positives while the error 
rate is the percentage of predicted positive that are false positive. With a higher coverage rate, 
there would be an associated higher error rate. In the graph, two different plots are given, 
depending on the ratio of the size of the positive to negative training examples -- what we call 
the positive-to-negative-training ratio . One plot has a ratio of 1:1 while the other has 1:10. Each 
point on the graph represents a different threshold setting. For the experiment, we chose a 
threshold setting of 0.0 with a positive-to-negative-training ratio of 1:10, which is shown by the 
darkened circle. This corresponded with a coverage rate of approximately 36% and an error rate 
of approximately 1.8%. 
 
Figure 4. Overall Network  
The complex interconnected network of the transcription factors and all their targets. Because the 
network is dominated by transcription factors targets that do not provide further control with 
relatively few transcription factors, there appears to be several centers of control with many 
targets.  
 
Figure 5. Chromosomal Position 

Positions of genes controlled by ten transcription factors. For each transcription factor, their 
targets are colored on the chromosome map of the yeast genome. Chromosome IV is divided into 
two lines: the first line contains position from 1 to 800 kb and the second shows position from 
800 kb on. This provides an overall chromosome view of transcription control. 



 
Figure 6. Comparison of two ChIP-chip datasets with our predictions 
 (A) The sharing of the transcription factors that were used in the three studies. (B) The number 
of TF-target pairs that were shared among the three datasets. This only included the predictions 
from the datasets that shared common transcription factors shown in (A).  
 
Tables 
 
Table 1. Three-fold cross-validation using five different kernel functions.  
For each kernel function (powers 1 to 4 and radial), true positives, false positives, true negatives, 
false negatives, sensitivity, specificity, and precision are shown in the different columns. The 
methods of calculation are described in the text. 
 
Table 2. Transcription factors in the study.  
This table lists the 36 transcription factors used this study. For each transcription factor, the 
function and the number of predicted targets are shown in the columns. The average number of 
targets per transcription factor is approximately 93. 
 
Table 3. Top transcription factor targets.  
This table shows the top transcription factor targets that are controlled by more than 10 
transcription factors. The average number of transcription factors for each target is 
approximately 1.8. 
 
Table 4. Predicted TF-target examples. 
The first column is the transcription factor, second column is its target, third column is the 
prediction scores. (The entire list can be obtained from our website.)  
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Table 1
TP TN FP FN Sensitivity Specificity Precision

Power = 1 29 467 113 29 0.50 0.81 0.78
Power = 2 36 536 44 22 0.62 0.92 0.90
Power = 3 32 561 19 26 0.55 0.97 0.93
Power = 4 22 568 12 36 0.38 0.98 0.92

Radial 9 579 1 49 0.16 1.00 0.92
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Table 2
Transcription 

Factor
Number of 

Targets
Transcription 

Factor
Number of 

Targets
STE12 1032 SIN3 37
RAP1 306 SIR2 25
ZAP1 286 SIR3 18
RTG1 271 HIR2 16
SOK2 194 GLN3 11
YAP1 189 YAP3 11
RPD3 135 MBP1 9
GCN5 105 GCN4 7
GCR1 104 SWI6 7
TUP1 71 SWI5 6
PDR1 68 ARGR1 5
PPR1 66 RGT1 4
PHO4 65 GAL4 3
SWI4 63 STB4 2
SIR4 63 YAP7 2
RPN4 59 CAT8 1
HDA1 55 TEC1 1
SSN6 47 PDR3 1

AVERAGE = 92.92
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Table 3
Target Number of TF Target Number of TF
ZRT1 20 HSP150 11
YGP1 16 ALD6 11
HXT2 15 PHO5 11
PHO12 14 FAA3 10
HIS4 14 TDH3 10
FBP1 13 ASN1 10
SIP4 12 CLN2 10
ADE12 12 SUC2 10
ARG5,6 12 ILV3 10
PCK1 12 GIC2 10
HXT5 11 TYE7 10
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Table 4

Transcription 
Factor TF Target Score Transcription 

Factor TF Target Score

RTG1 FET3 18.83 RPD3 ALD6 6.965
RAP1 RPS1A 18.48 GCR1 FET3 6.601
SIR4 GPM1 11.27 YAP3 PGK1 6.591
SIR4 PGK1 10.66 RPN4 PDC1 6.473
RAP1 RPL40B 9.301 RTG1 HXT6 6.438
PDR1 PDC1 9.096 RPN4 PGK1 6.437
ZAP1 FET3 9.007 SOK2 ALD6 6.325
RPD3 GPM1 8.65 GCR1 ALD6 6.29
ZAP1 PGK1 8.377 RTG1 YGP1 6.222
ZAP1 GPM1 8.231 RAP1 APL3 6.011
GCR1 PDC1 8.2 RTG1 ADE5,7 6.006
ZAP1 PDC1 8.159 RAP1 RPS4A 5.994
RAP1 RPL26B 8.13 TUP1 PGK1 5.882
STE12 GPM1 8.089 RAP1 PHO12 5.867
YAP1 FET3 8.084 PHO4 RPL25 5.804
YAP1 GPM1 7.994 HIR2 TDH3 5.752
PDR1 ALD6 7.751 ZAP1 ALD6 5.747
RTG1 HXT7 7.707 TUP1 PDC1 5.711
SIR4 TDH3 7.56 RPN4 GPM1 5.685

STE12 PDC1 7.477 RAP1 RPS9A 5.625
RTG1 ACS2 7.368 PDR1 YEF3 5.556
RAP1 RPL7A 7.274 TUP1 FET3 5.484
ZAP1 ENO2 7.105 ZAP1 TDH3 5.479
SSN6 FET3 7.07 ZAP1 ACS2 5.472
GCR1 GPM1 7.02 SIR4 RPL21B 5.458




