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ABSTRACT We present an approach for assessing the significance of

sequence and structure comparisons using the same statistical formalism for

both sequence and structure.  This involves doing an all-vs-all comparison

of domains from the scop database, and then fitting a simple distribution

function to the observed scores.  Using the distribution, we attach a

statistical significance to each comparison score in the form of a P-value,

the probability that a better score would occur by chance.  We find that the

scores for sequence matching follow an extreme-value distribution as is

expected  The agreement between the statistics used by standard programs

(e.g., BLAST and FASTA) and our differently derived P-values validates

our approach.  We find structure comparison scores also follow an

extreme-value distribution, when the statistics are expressed in terms of a

structural alignment score (essentially the sum of reciprocated distances

between aligned atoms less gap penalties).    The traditional metric of

structural similarity, the RMS deviation in atom positions after fitting

aligned atoms, performs less well than structural alignment score.

Comparison of the sequence and structure statistics for pairs of proteins

known to be distant homologues shows that structural comparison is able to

detect about twice as many distant evolutionary relationships as sequence

comparison (at the same rate or error).  It also indicates that there are very

few pairs with significant similarity in terms of sequence but not structure,

whereas many pairs have significant similarity in terms of structure but not

sequence.
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Introduction

Comparison is a most fundamental operation in biology.  Measuring

the similarities between "things" enables us to group them in families,

cluster them in trees, and infer common ancestors and evolutionary

progression.  Biological comparisons can take place at many levels, from

that of whole organisms to that of individual molecules (for an example of

systematic comparison applied to organisms see (1) and (2).  We are

concerned here with the comparison on the latter level, specifically with

comparisons of individual protein sequences and structures.

Our overall aim is to describe these two types of comparisons in a

self-consistent, unified framework.  For sequence or structure comparison,

each act of comparing one “entity” to another (i.e. either comparing two

sequences or two structures) involves two steps.  First, the two objects are

optimally aligned through the introduction of gaps in such a way as to

maximize their residue-by-residue similarity.  This operation generates

some form of total similarity score for the number of residues matched --

traditionally, a percent identity for sequences or an “RMS” for structures

though we will use other measures here.  Second, one has to assess the

significance of this score in context of what is known about the proteins

currently in the database.

In an earlier paper we tackled the first of these two parts.  Gerstein

& Levitt (3) extended the work of Subbiah et al. (4) and Laurents et al. (5)

and described an approach for structural alignment in an analogous fashion
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to the traditional approach for sequence alignment (6 - 9).  Like sequence

alignment, this method involves applying dynamic programming to a

matrix of similarities between individual residues to optimize their overall

correspondence through the introduction of gaps.  However, the dynamic

programming does not necessarily arrive at the best alignment on the first

go for protein structures, as it does for sequences.  To overcome this, we

iterate the procedure until it converges.

In this paper we tackle the second of the two steps in protein

comparison, assessing significance.  We develop a simple empirical

approach for calculating the significance of an alignment score based on

doing an all-vs-all comparison of the database and then curve fitting to the

distribution of scores of true negatives.  This allows us to express the

significance of a given alignment score in terms of a P-value, the chance

that an alignment between two randomly selected proteins would obtain this

score.  We apply our approach consistently to both sequences and

structures.  For sequence we can compare our fit-based P-values with the

differently derived statistical score from commonly used programs such as

BLAST and FASTA (10-13).  The agreement we find validates our

approach.  For structure alignment, we follow a parallel route to derive an

expression for the P-value of a given alignment in terms of the structural

alignment score.

Our work follows on much work that has recently been done

assessing the significance of sequence and structure comparison.  One of
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the major developments in the past few years has been the implementation

of probabilistic scoring schemes (13, 14, 15, 16).  These give the

significance of a match in terms of a P-value rather than an absolute, “raw”

score (such as percent identity).  This places scores from very different

programs in a common framework and provides an obvious way to set a

significance cutoff (i.e. at P  =< 0.0001 or 0.01%).  P-values were first

used in the BLAST family of sequence searching programs, where they are

derived from an analytic model for the chance of an arbitrary ungapped

alignment (10, 17).  P-values have subsequently been implemented in other

programs such as FASTA and gapped BLAST using a somewhat different

formalism (13, 18, 19).

There are currently many methods for structural alignment (20 -

31).  Some of these have associated with them probabilistic scoring

schemes.  In particular, one method (VAST) computes a P-value for an

alignment based on measuring how many secondary structure elements are

aligned, as compared to the chance of aligning this many elements

randomly (28).  Another method (27, 32) expresses the significance of an

alignment in terms of the number of standard deviations it scores above the

mean alignment score in an all-vs-all comparison (i.e., a Z-score).

However, in none of the current structure comparison methods is

significance derived in the same fashion as it is for the sequence

comparison algorithms.  Our contribution here is to do just this: to derive
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significance P-values in a consistent fashion for comparison of both

sequences and structures.

Data set used for Testing

One of the most important aspects of our analysis is that we carefully

tested it against the known structural relationships.  This allowed us to

unambiguously decide whether a given comparison resulted in a true or

false positive and to objectively decide between different statistical

schemes.  In particular, structures were taken from the Protein Data Bank

(33 - 34), and domain definitions, definitions of structural class, and known

structural similarities were taken from the scop database (version 1.32,

May 1996, refs. 35 - 37).  The creators of scop have clustered the domains

in the PDB on the basis of sequence identity (38, 39).  At a sequence

identity level of 40%, this procedure results in 941 unique sequences

corresponding to the known structural domains.  These 941 sequences were

what we used as test data for both the sequence and structure comparison.

They contain 390 different superfamilies and 281 different folds.  Here we

concentrate on superfamily pairs, which involve 2107 nontrivial pairwise

relationships between the domains, as they have a considerably closer and

more certain relationship than fold pairs.
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Sequence Comparison Statistics

Sequence matching was done with standard approaches: in particular,

we used the FASTA program's (12, 40) version 3.0 SSEARCH

implementation of the Smith-Waterman algorithm (Smith & Waterman,

1981), with a gap opening penalty of -12, a gap extension penalty of -2,

and the BLOSUM50 substitution matrix (which has a maximal match score

of 13 (for C to C) and an expected average match score of -0.36, ref. 40).

A Probability Density Function
for Sequence-Comparison Scores

Each pairwise sequence comparison is best quantified by three

numbers, Sseq, n and m, where Sseq is the raw sequence alignment score

and n and m are the lengths of the two sequences compared.  Comparing all

possible pairs of sequences (i.e. 941 x 940) allows us to calculate an

observed probability density, ρoseq, the chance of finding a pair of

sequences with particular values for Sseq and ln(nm).  Figure 1(a) shows

the density for pairs between all sequences.  This includes the scores for

~300 sequence pairs that are closely related, which clearly show up as

"spots" on right side of the plot.  These high-scoring, "true positives" are

removed in Fig. 1(b), which shows the density for just the sequence pairs

in different structural classes (42), i.e. sequences pairs that are definitely

unrelated.

Figure 2(a) shows the density distribution as a function of Sseq for

sections at constant ln(nm).  The clear linear relationship between
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log(ρoseq) and Sseq at high values of Sseq is indicative of an extreme-value

distribution.  Thus, we attempt to fit the calculated density using the

function

ρcseq(Z) = exp(-Z - exp ( -Z ) )

The variable Z is defined in terms of Sseq and ln(nm) using a "Z-score-

like" expression:

Z = ( Sseq - µseq ) / σseq (eq. 2)

where µseq = a ln(nm) + b and σseq= a are the most likely sequence score

and width parameter for the distribution (using the same parameter a for

both µseq and σseq is done to fit theory as shown below).  The two

adjustable parameters, a and b, are obtained by fitting the calculated density

ρcseq(Z) to the observed density ρoseq(Z) for all values of Sseq and ln(nm).

Substituting for µseq and σseq in equation (2) gives:

Z = ( Sseq - a ln(nm) - b )/a  =  Sseq/a - ln(nm) - b/a

To derive specific values for the a and b parameters, we fit the above

formulas to the observed density distribution obtained by comparing pairs

in different scop classes, getting a = 5.84 and b = -26.3.  The fit was done

by least-squares optimization using the simplex minimizer in MatLab (44).

It has a residual of 0.084, which was calculated using the following

standard relation:

R =  Σ wi(Oi -Ci )2 / Σ wi(Oi)2, (eq. 3)

where i indexes “bins” with particular Sseq and ln(nm) values, Oi = log

(ρoseq(Zi)) is the observed density, Ci= log (ρcseq(Zi)) is the calculated
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density, wi = 1/Ni is a weighting factor, Ni is the number of sequence pairs

in a bin, and the summation is over all bins i with ln(nm) between 5.9 and

13.5.

We have also use a four-parameter model: µseq = a ln(nm) + b and

σseq = c ln(nm) + d, where a, b, c and d are the four adjustable parameters.

The least-squares fit gives a = 6.40, b = -31.9, c = 0.00272 and d = 5.67

with a residual of 0.073, slightly lower than for two parameters.  In this

study we use the two parameter model as it works almost as well and is

closer to the theoretical distribution for ungapped alignment (10).

A Cumulative Sequence Distribution Function,
giving the P-value

To estimate the statistical significance of a particular comparison in

terms of particular Sseq, n, and m values, we need the cumulative

distribution function, Pseq(z > Z), which is defined as the probability that

matching two random sequences will give a z value greater than, or equal

to, Z.  This is just the integral of ρcseq(z) from z = Z to z = infinity.

∞                                  ∞

Pseq(z > Z) = ∫ exp(-z - exp(-z)) dz = ∫ exp(-z) exp(-exp(-z)) dz

Z                                 Z

= 1 - exp(-exp(-Ζ)) (eq. 4)
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Note that the cumulative distribution function is just the probability that a

value of z greater than the given Z occurs by chance.  Writing Z in terms

of Sseq, n and m gives

Pseq(s > Sseq) = 1 - exp(-exp(-Sseq/a + ln(nm) + b/a)) (eq. 5)

where the parameters a and b are given above.

For large scores and, consequently, Z-values this expression can be

considerably simplified.  Specifically, for Z >> 0, exp(-Ζ) is small (i.e.

equal to a small ε) so that Pseq approximates 1 - exp( -ε ) = 1 - (1 - ε) = ε.

This means that for large Z:

Pseq(z > Z) = exp(-Ζ)

Pseq(s > Sseq) = exp(-Sseq/a + ln(nm) + b/a)

= exp(b/a) nm exp(-Sseq/a)

This makes sense in that the chance of getting a random score greater than

Sseq depends on the product of the lengths of the sequences and decreases

exponentially with increasing Sseq.

Relation to BLAST P-value (Karlin & Altschul
Parameters)

For sequence comparison without gaps, Karlin & Altschul (10, 11)

derived the following cumulative distribution function:

PK&A(s > Sseq) = 1 - exp(-exp( -λ(Sseq - ln(Kmn) / λ) ))

= 1 - exp(-exp( -λ Sseq + ln(Kmn) ) )
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where λ and K are calculated analytically based on the sequence

composition and amino-acid scoring matrix.  Comparison of their

analytical form with our P-value expression (equation 4) shows that  λ =

1/a and K = exp(b/a).  The simple relationship between a and b parameters

and Karlin & Altschul’s λ and K is one of the reasons we did a two-

parameter fit (above).  Substituting the specific values for a and b we

calculated from the fit, we find that λ = 0.171 and K = 0.011.  For the

particular database sequences and amino-acid scoring matrix used here

(941 scop domains and BLOSUM50), the values for λ analytically

calculated by the Karlin & Altschul’s formula range from 0.217 to 0.259

with a mean of 0.232.  This is significantly larger than our best fit value,

of 0.171.

Relation to FASTA E-value

In the FASTA sequence comparison programs (12, 13, 18), the

significance of a given alignment score Sfa, given by Pfa(s>Sfa), is

estimated by fitting an extreme-value distribution to scores resulting from

comparison of a given query sequence to each sequence in the database.

The distribution is recomputed for each new query so that, unlike our

approach, each query sequence is associated with a different distribution

function.  This has the advantage that it allows any peculiarities of the

query sequence to be explicitly taken into account.  However, it also means

that one can not readily compute the significance for a single pairwise

comparison (whereas we express the significance as a simple formula) and



Page 12

that the results of a given sequence comparison are not symmetrical.  By

non-symmetrical, we mean that comparison score for matching sequence A

to B, where A is the query and B is in the database, is not the same as for

matching B to A, where B is the query and A is in the database.

The value commonly used by FASTA and BLAST in judging the

significance of a sequence similarity is known as the expectation value or

E-value (known here as Efa), which is the number of errors expected when

a single query sequence is compared to the entire database.  The P-value,

defined above, gives the statistical significance of a single comparison,

whereas the E-value is an estimate of the number of false positives, or non-

similar matches with a score that is judged to be significant, for a search of

the entire data base.  If there are Ndb entries in the data base, the E-value is

just Ndb times the P-value (here Ndb = 940).  An E-value can be calculated

from our Pseq(s > Sseq) using Eseq = Ndb Pseq.  The E-values we obtain

(expressed as log(Eseq) to allow for the wide range of values), are very

similar to those found by FASTA (expressed as log(Efa)) over a very wide

range of values (Fig. 3).  When one considers that our closed-form Eseq

depends on only two parameters for all pairs, whereas Efa is optimized

separately for each query sequence (941 times 2, or 1882 parameters in

all), this agreement is astonishing and is likely to be useful for pairwise

comparisons that do not involve searches of the entire data base.  It also

confirms that we have been able to extract the correct underlying

distribution by fitting the to observed density of true negative pairs.  Thus,
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this result validates our approach to some degree and helps us to approach

the somewhat more complicated structure comparison situation.

Measuring Coverage vs. Error Rate to Compare
Different Formalisms for Significance Statistics

We have presented two forms of E-value statistics for sequence

comparison: our method, Eseq, which is based on fitting a two parameter

model to the observed distribution of alignment scores, and the FASTA

method, Efa, which is based on fitting different distributions for each

query.  Now we are naturally led to ask if there is an objective way to

decide which formalism performs the best on some representative test data.

The seminal work of Brenner et al. (39) and Brenner (43) provides a

framework for such an assessment, using the known true-positives in the

scop dataset and a coverage-vs-error (CVE) plot.  To compare any two

significance statistics formalisms, we proceed as follows:

(1) For each of the pairs in the all-vs-all comparison (941 x 940 pairs), we

determine an E-value, based on the two approaches we are comparing, and

a notation of whether or not the pair is a true positive or true negative (for

true positives, both sequence must be in the same superfamily in the scop

classification).  (2) For each E-value measure, we sort the pairs by

increasing E-value.  (3) We count down the list from best to worst until the

number of false positives is 1% of the total number of database entries

(here this would be 9, which is about 1% of 941).  (4) We look at the

threshold E-value at this point.  It should ideally be close to 0.01, so as to
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correspond to the 1% error rate (per query).  (5) We also look at the

number of entries which are more significant than the threshold E-value.

These define the coverage and it should be as large are possible.  (6) After

repeating the proceeding five steps with E-value based on the second

approach we compare the coverage and also how closely the E-value

threshold corresponds to the actual error rate.

Here, we compare the coverage and error rate of our sequence score

statistics with those of FASTA (Eseq vs. Efa).  At the threshold E-value,

our sequence statistics have log Eseq = -1.98 and a coverage of 328 and the

FASTA statistics have a log Efa of -1.68 and a coverage of 379.  The

FASTA statistics have better coverage but our statistics have an almost

perfect threshold value.

Structure Comparison Statistics

Our Basic Pairwise Structural Comparison Procedure

The procedure we use for pairwise structural alignment is described

in detail in Gerstein & Levitt (3) and only summarized briefly here.  Our

core method is based on iterative application of dynamic programming.  As

such it is a simple application of the Needleman-Wunsch sequence

alignment (6).  It was originally derived from the ALIGN program of G.

Cohen (21, 31) with many subsequent elaborations.  One starts with two

structures in an arbitrary orientation.  Then one computes all pairwise

distances between each atom in the first structure and every atom in the
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second structure.  This results in an inter-protein distance matrix where

each entry dij corresponds to the distance between residue i in the first

structure and residue j in the second (inter-residue distances are usually

expressed as alpha-carbon distances).  This distance matrix can be

converted into a similarity matrix Sij, analogous to the one used in sequence

alignment, through the relationship

Sij = M / (1 + (dij/do)2),

where, somewhat arbitrarily, M = 20 and do = 5 Å.

One applies dynamic programming to the similarity matrix to get

equivalences (using a gap opening penalty of M/2 = 20 and no gap

extension penalty).  If this were normal sequence alignment, one would be

finished at this point since dynamic programming followed by trace back

gives the optimal set of equivalences.  However, this is not the case for

structural alignment.  So one takes these equivalences and uses them to

least-squares fit the first structure onto the second one (45).  Then one

repeats the procedure, finding all pairwise distances and doing dynamic

programming to get new equivalences, until convergence.  In practice, the

iteration is tried from a number of different starting points, and the one

that gives the best score is taken.

After determining an alignment, it can be “refined” by eliminating

the worst fitting pairs of equivalenced residues and then refitting to get a

new RMS, in a similar fashion to the core-finding procedure in Gerstein &

Altman (46, 47).  This refinement is necessary as the dynamic
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programming tries to match as many residues as possible (i.e., it is a global

as opposed to local method).

The Structural Comparison Score and the RMS

At the end of the procedure, we are left a number of scores

characterizing our final alignment.  The most basic is the total number of

equivalenced atoms N and the sum of similarity matrix scores Sij for the

optimum alignment less the total penalty for opening gaps.  We refer to

this sum here as Sstr.  Explicitly, it is computed by the following formula:

Sstr = M ( (Σ 1 / (1 + (dij/do)2) ) - Ngap/2 ) (eq. 6)

where Ngap is the total number of gaps (not including gaps at the end of a

chain) and the summation is carried out over all pairs ij of equivalenced

residues.  It is important to realize that while the Sstr is naturally produced

by our specific alignment method, it can be calculated from any structural

alignment (by substituting the distances between equivalenced alpha-

carbons into equation 6).  Thus, all the significance statistics that follow

could be computed from the results of any structural alignment program,

not just our own (and, consequently, provide a uniform basis for

comparing the various programs).

However, structural alignments have been traditionally characterized

by another quantity, the RMS deviation in alpha-carbon positions after

doing a least-squares fit on the positions of equivalenced atoms (the

“RMS”).  RMS-based statistics were used in our earlier work (e.g. ref. 3-5)

and almost all other work in structural-alignment (e.g. the SAS-score in the
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original work of ref. 22 is essentially RMS-based).  Consequently, we

initially felt obligated to try to phrase our structural comparison statistics

in this more conventional language.

We describe in detail below two separate statistical treatments of

structural comparison, one based on structural alignment score and the

other based on the RMS.  After doing this, we provide a comparison of the

two treatments and show why the one based on structural alignment score

is clearly superior.

A Probability Density Function
for Structural Alignment Scores

To derive significance statistics for the structural alignment score

Sstr, we proceed exactly as we did for sequence comparison.  Structural

alignment of all pairs in the database (941 x 940, excluding the protein to

itself) gives us an observed probability distribution for comparison scores

ρcstr, which is a function of the number of residues matched N and the

comparison score Sstr.  This is shown in Fig. 4.  Part (a) shows the data for

all pairs.  It contains the many pairs of structures that are similar, and these

pairs stand out with high values of the structural alignment score Sstr.  Part

(b) shows data for pairs that are in different scop structural classes and,

therefore, should not show structural similarity.  It is much "cleaner" than

part (a) and shows the underlying distribution expected for the comparison

of structures that are not similar.  It is this observed density distribution
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function that we need to fit in a similar manner as done for sequences

above.

Figure 2(b) shows the density distribution as a function of Sstr for

sections at constant N.  There is a close parallel between the structural

alignment score Sstr and the sequence alignment score Sseq in Fig. 2(a), and

both can be fit modeled by an extreme-value distribution.  Thus we fit the

calculated structure density by

ρcstr(Z) = exp(-Z - exp ( -Z ) )

where variable, Z, is defined in terms of Sstr and N using:

Z = ( Sstr - µstr ) / σstr (eq. 7)

The most likely structure score µstr and the width parameter σstr have a

more complicated dependence on sequence length (N)  than was the case

for sequences, viz.:

µstr(N) = c ln(N)2 + d ln(N) + e for N < 120

µstr(N) = a ln(N) + b for N >= 120

and

σstr(N) = f ln(N) + g for N < 120

σstr(N) = f ln(120) + g for N >= 120

Continuity of function values and slopes allows a and b to be written in

terms of c, d and e.  More specifically at N = 120, a ln(N) + b = c ln(N)2 +

d ln(N) + e and a = 2c ln(N) + d.  This functional form with the break at N

= 120 is the simplest approximation to the observed dependence on N of
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the observed density maximum and standard deviation (Fig, 2(b)); it fits

well at small N and ensures that the distribution behaves well at high N.

Thus, the expressions for µstr(N) and σstr(N) involve 5 independent

parameters c, d, e, f and g.  We determined these five parameters via least-

squares optimization using the Simplex minimizer in MatLab (44).  This

yields c = 18.4, d = -4.50, e = 2.64, f = 21.4 and g = -37.5 (a = 419.3 & b

= 171.8 are derived as described above).  The residual in the fit 0.288.  (It

is given by the same formula as was used for residual in the sequence

statistics fit (equation 5) with Oi=ρostr(Zi), Ci=ρcstr(Zi) & wi = 1 (unit

weights, wi, worked better in this case) and the summation is over bins

with any value of Sstr and N between 30 and 170 residues.)  The resulting

fit of the observed and calculated distribution is good for all values of N

and Sstr, as is apparent in Fig. 2(b).

A Cumulative Structure Distribution Function,
giving the P-value

To estimate the statistical significance of a particular structure

comparison in terms of its Sstr and N values, we proceed as we did for

sequence comparison.  We integrate the score distribution to determine a

cumulative distribution function Pstr, defined as the probability that

matching two random structures will give a z value greater than, or equal

to, Z(Sstr,N).  As the structure score distribution has same extreme-value

form as the sequence score distribution, the derivation of Pstr has the same

form as Pseq, and we only quote the final result below:
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Pstr(z > Z) = 1 - exp(-exp(-Ζ))

where Z is expressed in terms of Sstr and N using

Z = ( Sstr - (c ln(N)2 + d ln(N) + e) / (f ln(N) + g),  N < 120

Z = ( Sstr - (a ln(N) + b) / (f ln(120) + g),  N >= 120

and the seven parameters a, b, c, d, e, f, and g are given above.  Finally,

we can calculate an E-value for structure comparison Estr in the same

fashion as sequence comparison: Estr=Ndb Pstr = 941 Pstr.

Structural Comparison Statistics based on RMS

The traditional characterization of a structural alignment is in terms

of the number of residues matched N and the RMS deviation in alpha-

carbon positions from least-squares fitting these matched residues, R.  Here

we derive statistical significance statistics for structural comparison based

on these quantities.  It is convenient to focus on ln(R) rather than simply R.

This ensures that there is good separation of values for small R, which is

where the significant pairs occur.  (R can never be smaller than zero but

ln(R) approaches minus infinity as R tends to zero.)  Using the basic

quantities N and R we calculate a probability distribution ρorms(ln(R),N)

for the observed RMS values in the true-negative pairs in the same fashion

as we did earlier for the observed distribution of structural alignment

scores, ρostr(Sstr,N).  However, this probability distribution has a distinctly

different appearance from the earlier one.  Figure 5 shows that the profiles

of ρorms at constant N are more symmetrical than analogous profiles of

ρostr shown earlier in figure 2(b).  This indicates that an extreme-value

distribution would not be an appropriate fitting function.
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The fact that log (ρorms) varies very slowly near the maximum

suggests that we attempt to fit the calculated density using:

ρcrms(Z) = exp(-Z4),

where the variable Z is a "Z-score-like" expression, defined in terms of

ln(R) and N as

Z = ( ln(R) - µrms(N) ) / σrms(N)

with

µrms(N) = c ln(N)2 + d ln(N) + e for N < 60

µrms(N) = a ln(N) + b for N >= 60

and

σrms(N) = f ln(N) + g for N < 60

σrms(N) = f ln(60) + g for N >= 60

The functional form of these expressions for µrms(N) and σrms(N)

and the choice of the break at N = 60, was determined from the dependence

on N of the observed density maximum and standard deviation (Fig. 5).

The values of the five independent parameters c, d, e, f and g are

determined by least-squares optimization using the Simplex minimizer in

MatLab.  This yields c = 0.155, d = -0.619, e = 1.73, f = 0.0922 and g =

0.212 (a = 0.872 & b = 0.650, which are determined as before to ensure

continuity) with residual of 0.073.  (It is given by the same formula as was

used for residual in the sequence statistics fit (equation 5) with

Oi=ρorms(Zi), Ci=ρcrms(Zi), wi  = 1/Ni, Ni is the number of pairs in a bin,

and the summation over all bins with any value of Srms and N between 30
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and 170 residues.)  The resulting fit of the observed and calculated

distribution is good for all values of N and R, as is apparent in Fig. 5.

To estimate the statistical significance of a particular comparison in

terms of its R and N values, we proceed as we did before, deriving a

cumulative distribution function Prms(z > Z), defined as the probability that

any z will be less than, or equal to, a given Z.  This is just the integral of

ρcrms(z) from z = -infinity to z = Z.

Ζ

Prms(z > Z) =∫ exp(-z4) dz

-∞

The function, exp(-z4) cannot be integrated analytically.  Instead we

integrate exp(-z4) numerically for z from -5 to Z and tabulate its value for

10,000 different Z values from -5 to 5.

It is also convenient to tabulate the limiting values of RMS, Rlim, that

correspond to particular significance levels (i.e. Prms values) for different

values of N.  Plots Rlim values against N for Prms(z > Z) = 10-7, 10-6, 10-5

and 10-4 show that Rlim depends approximately linearly on N and can be

written as:

Rlim = A N + B,

where the values of A and B depend on log (Prms).  For example, to

achieve a significance better than 10-7, the RMS must be smaller than

0.0119 N + 1.55, which is 2.74 Å for a 100 residue match.  In contrast, for

a P-value threshold of 1%, the RMS must be smaller than 0.0172 N + 2.37,
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which is ~4 Å for 100 residues.  This is approximately the significance

cutoff used in Gerstein & Levitt (3).

Comparing Structure Comparison Statistics:
Alignment Score Sstr vs. RMS

Now that we have derived structure comparison statistics based on

structural alignment score Sstr and RMS, we can compare them.  The same

coverage-vs-error scheme used above to compare the two formulae for

sequence significance can be used here.  When assessed in terms of

coverage (number of true positives found) at a given error rate on our test

data, the E-value statistics based on Sstr give much better performance (i.e.

have a larger coverage) than those based on RMS.  Specifically, we

compare the two approaches (Estr vs. Erms) in exactly the same way that we

previously compared our sequence E-value to that produced by FASTA

(Eseq vs. Efa).  We find that at the 1% error threshold, the RMS-based

statistics have log(Erms) = -32.8 and a coverage of 202, while the structural

alignment score (Sstr) statistics have log(Estr)=-1.58 and a coverage of 627.

Clearly, the statistics based on Sstr perform much better as the threshold is

much more reliable (i.e. closer to the error rate of -2) and the true positive

coverage is more than three times higher.  The difference between Estr and

Erms is striking and confirms that the structure score is much better than

the RMS score.  The coverage (at 1% error per query) obtained with the

structural score (627 pairs) is much higher than the coverage obtained with

the best sequence score (379 pairs, see above).
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There are other reasons why the structural alignment score is a more

reliable indicator of structural similarity that the commonly accepted RMS

deviation.  (1) Sstr depends most strongly on the best fitting atoms while

RMS depends most on the worst fitting atoms.  (2) Sstr penalizes gaps,

while RMS does not.  (3) Sstr is formally analogous to the score one gets

from a standard sequence comparison, Sseq, as both quantities can be

derived from a “dynamic-programming” similarity matrix.  As such, both

Sstr and Sseq directly reflects what the alignment procedure optimizes and

are therefore expected to have extreme-value distributions.

Relationship Between Sequence and Structure
Comparison

Having derived sequence and structure significance scores using all-

vs-all comparisons on the same data base of 941 sequences and structures,

we are now in a position to directly compare structure and sequence

significance scores.  Fig. 6. shows such a comparison for the 2107 pairs of

proteins in our data set that are considered to be evolutionarily related

according to scop (i.e. they are the true positives in the same superfamily).

The lines at log(Eseq) =-2 and at  log(Estr)= -2 divide the 2107 true-

positive pairs amongst four quadrants, depending on whether or not their

sequence or structure matches are significant, as follows:

1204 pairs in TOP-RIGHT (non-significant sequence match, non-significant

structure match).  Over half (1204 out of 2107) of the pairs of domains



Page 25

thought to be evolutionary related by scop fall into this category of having

no significant match, indicating that the combination of manual measures

used in scop is more sensitive than either automatic sequence or structure

comparison.

244 pairs in LOWER-LEFT (significant sequence match, significant

structure match).  These pairs are evenly distributed in the lower left

quadrant, indicating that both sequence and structure significance scores

are on the same scale.

576 pairs in LOWER-RIGHT (non-significant sequence match, significant

structure match).  There are many more pairs with good structure matches

but without sequence matches than with the converse (sequence match but

no structure match).  This objectively shows how much more structure is

conserved in evolution than is sequence.  These 576 pairs are very good

test cases for threading algorithms that match a sequence to a structure, and

we are currently testing them in this way.

83 pairs in TOP-LEFT (significant sequence match, non-significant

structure match).  Almost all the pairs (70 out of 83) in this category

involve matches with a small number of residues (N < 70).  For such short

matches, the structures may be deformed and not match well.  There are

seven labeled pairs that are exceptions as the match is extensive (N>70) but

the pairs are structurally less similar than would be expected from the

strong sequence match.  There are 11 coordinate sets involved in these 7

exceptions.  Three of these sets were solved by X-ray crystallography to
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only medium resolution (>2.9 Å, 1mys, 1scm and 1tlk), five were solved

by NMR (1prr, 1ntr, 2pld, 2pna and 1tnm) and three are high-resolution

X-ray structures (better than 1.7 Å for 1osa, 3chy and 1sha).  None of the

seven exceptional pairs involves two high-resolution structures and it seems

likely that some of the seven exceptions would have had a more significant

structural match if both structures in the pair were determined to high-

resolution.  Furthermore, as determined from consultation of a Database of

Macromolecular Movements (48), some of the seven exceptions involve

proteins with extensive conformational changes that have been solved in

different conformational states.  In particular 1osa, 1mys, and 1scm

involve proteins with the highly flexible calmodulin fold.  These are

clearly examples where one would expect sequence similarity and

structural differences.

Discussion and Conclusion

Summary

We have presented an approach for assessing the significance of a

given sequence or structure comparison in a unified statistical framework.

For either sequence or structure we fit an extreme-value distribution to the

observed distribution obtained from the all-vs-all comparison of pairs of

domains in different classes in the scop databank.  For sequence

comparison this result is as expected.  Thus, we empirically observe for
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gapped alignments what Karlin & Altschul (11) derived for ungapped

alignments.

For structure comparison, we find that the score distribution follows

an extreme-value distribution when expressed in terms of the structural

alignment score Sstr.  Using this measure, expressions for statistical

significance can be formulated in an almost identical way for structures as

they are for sequences.  In contrast, when the score distribution is

expressed in the more traditional RMS terms, it is more complicated and

the resulting very steep dependence of the probability on the Z-value makes

it much less useful for significance statistics.

In connection with this, it is interesting that recent work (39, 43)

indicates find that the significance statistics based the optimized "sum"

scores from dynamic programming (i.e. Smith-Waterman scores, which

are essentially sums of BLOSUM matrix values, less gap penalties) perform

much better than those based on the traditional measure of sequence

similarity, percentage identity.  This parallels the poor performance of our

statistics based on the traditional measure of structural similarity, RMS.  It

is disconcerting that such well-established and intuitive measures like

percentage identity or RMS work so much worse than the statistical

measures based on the sequence or structure alignment scores.

It is surprising that over half of the relationships between distant

homologues in the scop data base are not statistically significant (at the rate

of 1% error per query) using either pure sequence comparison or pure
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structure comparison.  Almost all the pairs found by sequence comparison

are also found by structure comparison, but there are many pairs found by

structure comparison that are not found by sequence comparison.  Overall,

structural comparison is able to detect about twice as many of the scop

distant homology superfamily pairs as sequence comparison (at the same

rate or error)

Future Directions

The approach we have used to derive statistical significance could

easily be generalized to other contexts.  In particular it can be adapted to

provide significance statistics for threading.

We have not presented a detailed examination of the significance

values for specific pairs of sequences or structures.  This could prove to be

a useful endeavor in the future, particularly focusing on pairs of proteins

with the same fold but insignificant E-values and those with different folds

but significant E-values.  These two classes of pairs characterize the

twilight zone for structure, which has yet to be fully described.
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Figure Legends
Fig. 1.  A probability density distribution for sequence comparison scores,
ρoseq, contoured against Sseq, the sequence alignment score (along the
horizontal axis) and ln(nm), where n and m are the lengths of the pair
sequences (along the vertical axis).  This density is closely related to the
raw data (via normalization) obtained by counting the number of pairs with
the particular S and ln(nm) values.  Due to the wide range of density
values, contours of log(ρoseq) are drawn with an interval of 1 (a full order
of magnitude).  When contouring the logarithm of a density function,
special attention must be paid to the zero values.  Here a zero value is set to
0.001, which effectively lifts the entire surface by 3 log units.   The data is
then smoothed by averaging with a Gaussian function (exp(-s/(∆Sseq/3)2)
over a window 14 units wide along the Sseq axis.  This smoothing together
with the treatment of zero observations serves to emphasize the smallest
observed counts (values of 1) by surrounding them with three contour
levels.  Panel (a) shows the data from all 884,540 pairs between any one of
the 941 sequences and any other sequence (pairs A-B and B-A are both
included).  The significant sequence matches are seen as the isolated spots at
high values of the score Sseq.  Panel (b) shows the data from 352,168 pairs
including only those pairs of sequences in different scop classes.  We also
exclude pairs between an all-alpha or all-beta domain and alpha+beta
domain as well as sequences that are not in one of the five main scop classes
-- alpha, beta, alpha/beta, alpha+beta and alpha+beta (multidomain).  This
is done to ensure that no significant matches will be found, and this is
indeed seen in the figure by the absence of any outlying spots at high score
values.  Thus, the density in (b) is free of any significant matches and
shows the underlying density distribution expected for comparison of
unrelated sequences.

Fig. 2.  Cross-sections of the sequence and structure density distribution
show they are both extreme-value distributions and that the calculated
distribution fits the observed distribution well.  Part (a) shows plots of the
logarithm of the observed, log(ρoseq), and calculated sequence pair density,
log(ρcseq), against the sequence match score, Sseq; it is taken from the data
for pairs in different classes (Fig. 1b).  Each panel shows the variation of
the density with Sseq for a particular value of ln(nm), the product of the
lengths of the sequences compared; this value is indicated by assuming n =
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m and showing the value of n.  The observed density is clearly an extreme-
value distribution with a linear fall-off of log(ρoseq) with Sseq.  The
calculated distribution obtained with a two parameter fit (dashed line, see
text) is a good fit for all values of n (or ln(nm)).  Part (b) shows plots of
the logarithm of the observed, log(ρostr), and calculated structure pair
density, log(ρcstr), against the structure match score, Sstr; it is taken from
the data for pairs in different classes (Fig. 4b).  Each panel shows the
variation of the density with Sstr for a particular value of the number of
aligned residues, N.  The observed density is clearly an extreme-value
distribution with a linear fall-off of log(ρostr) with Sstr.  The calculated
distribution obtained with a five parameter fit (dashed line, see text) is a
good fit for all values of N.  In both parts, there is more noise at high
values of ln(nm) or N where there is much less data (see Figs. 1b and 4b).

Fig 3.  The statistical significance derived here is shown to be similar to
that derived in a completely different way by the sequence comparison
program SSEARCH from the FASTA package (13).  We plot the expected
number of errors per search of the data base obtained by Pearson's
method, log(Efa), against the same value calculated here, log(Eseq) (which
is a function of the sequence match score, Sseq, and the length of the two
sequences).  More specifically, Efa is the E-value output by the FASTA-
SSEARCH program, whereas Eseq is calculated as 940*Pseq(s > Sseq) for
score Sseq using equation 5.  The accuracy of our simple two parameter fit
is confirmed by the fact that most pairs of log(Efa) and log(Eseq) values are
perfectly correlated, lying along the line log(Efa) = log(Eseq) over the
entire range.

Fig. 4. The logarithm of the density distribution for structure comparison
scores, ρostr, is contoured against Sstr, the structural alignment score (along
the horizontal axis), and N, the number of aligned residues (along the
vertical axis).  Following the protocol used for Fig. 1, the raw data
obtained by counting the number of pairs with the particular Sstr and N
values is first 'lifted' by setting 0 values to 0.001, it is then smoothed by the
same Gaussian averaging used for Sseq (Fig. 1) over a window 90 units
wide along the Sstr axis, and finally the log value is contoured in intervals
of 1 log unit.  Given the different scales used for Sseq and Sstr, the extent of
smoothing is very similar for both.  Panel (a) shows the data from all
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884,540 pairs between any one of the 941 sequences and any other
sequence.  Panel (b) shows the data from 352,168 pairs including only
those pairs of sequences in different scop classes (described in Figure 1).
Comparison of (a) and (b) shows that the true positive structural matches
are seen in the contours at the higher values of the alignment score, Sstr.
and also at higher values of the number of matches, N.  The density in (b)
is free of these significant matches and shows the underlying density
distribution expected for comparison of unrelated structures.

Fig. 5. The fit to the structure pair density using the RMS score.  The
observed, log(ρostr), and calculated structure pair density distributions,
log(ρcstr), are plotted against the RMS score, ln(R), for different numbers
of aligned residues, N.  The observed structure pair density, which is
derived from pairs in different classes, is clearly not an extreme-value
distribution as it is symmetrical about the maximum value and falls off
faster than a linear function with increasing Z.  In fact, it is best fit by
exp(-Z4).  The calculated distribution obtained with a five parameter fit
(dashed line) is a good fit when the numbers of aligned residues exceeds
50.  For smaller values of N, there is a preponderance of pairs.  In
particular, for short residues matches (30 or 40) there is a clear spike
around ln(R) = 1 (RMS = 2.7 Å); it is not clear what  this common sub-
structure is.

Fig. 6. Comparison of structure significance with sequence significance.
Plots of the structure significance, log(Estr), against the sequence
significance, log(Eseq), for the 2107 pairs of proteins judged to be
homologous in the scop database (in the same superfamily).  Pairs are
distinguished by the extent of the structural match, with solid squares used
for pairs with N >= 70 and unfilled diamonds used for N < 70.  The
horizontal and vertical dashed lines, which divide the figure into four
quadrants, are at log(Estr) =-2 and at log(Eseq) = -2, respectively.  Both
these thresholds correspond to an E-value of 10-2 and P-value of 10-2 / 941
= 10-5 so that we judge matches with lower values to be significant at the
1% level.
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