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Structural genomics projects represent major undertakings that will
change our understanding of proteins. They generate unique datasets
that, for the first time, present a standardized view of proteins in terms
of their physical and chemical properties. By analyzing these datasets
here, we are able to discover correlations between a protein’s character-
istics and its progress through each stage of the structural genomics pipe-
line, from cloning, expression, purification, and ultimately to structural
determination. First, we use tree-based analyses (decision trees and
random forest algorithms) to discover the most significant protein features
that influence a protein’s amenability to high-throughput experi-
mentation. Based on this, we identify potential bottlenecks in various
stages of the structural genomics process through specialized “pipeline
schematics”. We find that the properties of a protein that are most signifi-
cant are: (i) whether it is conserved across many organisms; (ii) the
percentage composition of charged residues; (iii) the occurrence of hydro-
phobic patches; (iv) the number of binding partners it has; and (v) its
length. Conversely, a number of other properties that might have been
thought to be important, such as nuclear localization signals, are not
significant. Thus, using our tree-based analyses, we are able to identify
combinations of features that best differentiate the small group of
proteins for which a structure has been determined from all the currently
selected targets. This information may prove useful in optimizing high-
throughput experimentation. Further information is available from
http://mining.nesg.org/.
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Introduction

With the advent of the post-genomic era, the
next challenge is to determine the structure of
encoded proteins,1 which can lead to functional
annotation of previously uncharacterized gene
products.2 – 5 The structural genomics effort has
demonstrated the possibility of rapid structure
determination on a genome-wide scale and is
expected to generate a considerable amount of
data. However, there are several challenges that
can deter the process of proteins through the
structural genomics pipeline,6 – 9 from target
cloning, expression, purification, to structural
determination.

In addition to a growing collection of crystal and
NMR structures, structural genomics is generating
new and novel datasets where proteins are subject
to uniform conditions for expression. Never before
has it been possible to gain access to such a large
amount of standardized experimental protein
data, generated for thousands of targets from
many organisms, at multiple sites over various
structural genomics consortia. These data sets can
be mined to look for correlations between a
protein’s properties and its performance in these
standardized experiments. For instance, we might
imagine that proteins that have more hydrophobic
sequences might be harder to express, or that
proteins that interact with partner proteins might
be less able to crystallize or fold correctly. These
questions can be answered now through these
new structural genomics datasets.

The SPINE database was created as an infor-
mation repository for the Northeast Structural
Genomics Consortium (NESG), and as a vehicle to
integrate and manage data in a standardized
fashion that makes it accessible to systematic data
analysis.10,11 Bertone et al. demonstrated the
potential data mining capabilities of the SPINE
database by developing a decision tree algorithm
that was used to infer whether a protein was
soluble from a dataset of 562 Methanobacterium
thermoautotrophicum protein expression
constructs.10 Here, we used information from all
the targets from TargetDB† amounting to over
27,000 selected targets from over 120 organisms, to
systematically correlate biophysical properties of
proteins with their sequence features in order to
determine their amenability to high-throughput
experimentation. This work has three values. First
of all, it utilizes a unique dataset generated under
relatively uniform conditions. Second, it can tell
us more about the properties of proteins in a
systematic fashion and, thirdly, it can generate
information needed to optimize protocols and con-
ditions for effective high-throughput structural
genomics.

Results and Discussion

Our overall approach to the data mining analysis
is twofold. First, we employ two types of tree-
based algorithms, random forest and decision tree
analysis, to identify features most influential in
determining whether a protein is amenable to
high-throughput experimental analysis. Random
forest analysis12,13 is a robust algorithm particularly
useful for calculating the importance of features by
measuring the effect of permutations of each
feature on prediction accuracy. It uses two tech-
niques: bagging (bootstrap aggregating) and
random feature selection. In combination, these
methods have been shown to improve the stability
and accuracy of prediction over a single-tree
model. While the random forest method is a robust
technique for ranking features in terms of their
importance, it is more difficult to interpret. In
order to measure the frequencies of proteins
containing certain features and understand how
combinations of these protein properties can affect
their amenability for experimental analysis, we
use decision trees,14,15 a commonly used machine
learning method. In general, we partition the initial
sample, consisting of positives and negatives, into
different subsets depending on a particular feature,
such as amino acid composition or protein binding
partners. If the feature separates the positives and
negatives preferentially, this is readily apparent
and the most selective rules appear at the top of
the decision trees.16 We use these decision trees to
identify and view features and combinations of
features that are particularly selective. In a second
type of analysis, which we call pipeline analysis,
we diagram the way in which particular features
change over the structural genomics pipeline and
identify bottlenecks or stages in the pipeline
where these features show the largest change.

Tree-based analysis

As of February 2003, sequence and experimental
progress information for 27,267 protein targets
were collected from the TargetDB and used in the
tree analyses. We performed the tree analyses on
all the targets found in the TargetDB in order to
discover protein features that are the strongest pre-
dictors for whether a protein can be determined
structurally. The protein properties used in the
analysis are listed in Table 1. These properties
comprise of general sequence composition, and
other protein characteristics such as clusters of
orthologous groups (COG) assignment, length of
hydrophobic stretches, number of low-complexity
regions, and number of interaction partners.

Based on the current data in TargetDB, 1.3%
(370/27711) of all targets are structurally deter-
mined. Results from the random forest (Table 2)
and decision tree (Figure 1(a)) analyses suggest
that protein properties such as COG17 assignment;
percentage composition of charged, polar, and† http://targetdb.pdb.org
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Table 1. Protein features analyzed

Protein feature Protein description

Number of
trees

feature is
found

All
targets

Structurally
determined

targets
Meta

descriptor

COG Have COGs (%) .1 59 85 Yes
GAVLI Average GAVLI composition (%) .1 34.6 38.4 No
DE Average DE composition (%) .1 12.7 14.2 No
SCTM Average SCTM composition (%) .1 15.5 13.6 No
Any_partners Average number of known binding partners of

the yeast homolog from many sourcesa

.1 3.8 4.1 Yes

pI Average pI .1 7.1 6.3 No
Length (amino acid
residues)

Average length .1 291 243 No

Q Average glutamine composition (%) .1 3.6 3 No
W Average tryptophan composition (%) .1 1.1 1 No
K Average lysine composition (%) .1 6.7 6.7 No
hp_aa Average number of hydrophobic residues

within a hydrophobic stretch below a
threshold of 21.0 kcal/mol

1 15 7 No

Sheet Average b-strand composition (%) 1 15.8 19.8 No
cplx_s Average normalized low-complexity

value—short
1 14.6 13.3 No

S Average serine composition (%) 1 6.7 5.2 No
E Average glutamic acid composition (%) 1 7.4 8.6 No
NQ Average NQ composition (%) 1 7.6 6.5 No
DENQ Average DENQ composition (%) 1 19.7 20.5 No
I Average isoleucine composition (%) 1 5.9 6.2 No
AILV Average AILV composition (%) 1 29.4 31.6 No
ST Average ST composition (%) 1 11.5 10 No
A Average alanine composition (%) 1 7.2 8.1 No
C Average cysteine composition (%) 1 1.5 1 No
KR Average KR composition (%) 1 12.5 12.6 No
M Average methionine composition (%) 1 2.5 2.4 No
P Average proline composition (%) 0 4.7 4.4 No
V Average valine composition (%) 0 6.9 7.8 No
N Average asparagine composition (%) 0 4 3.5 No
hphobe Average minimum hydrophobicity score on

the GES scale
0 2.9 -0.6 No

Complex_partners Average number of known binding partners of
the yeast homolog based on the MIPS
complex catalog35 –39

0 0.74 0.47 Yes

cplx_l Average normalized low complexity
value—long

0 20.5 21.4 No

helix Average helix composition (%) 0 40.1 39 No
coil Average coil composition (%) 0 44 41.1 No
LM Average LM composition (%) 0 11.6 11.8 No
R Average arginine composition (%) 0 5.9 5.9 No
DEKR Average DEKR composition (%) 0 26.8 25.2 No
HKR Average HKR composition (%) 0 14.3 14.5 No
D Average aspartic acid composition (%) 0 5.3 5.6 No
F Average phenylalanine composition (%) 0 4.1 3.7 No
Y Average tyrosine composition (%) 0 3.1 2.9 No
T Average threonine composition (%) 0 5.1 4.9 No
H Average histidine composition (%) 0 2.3 2 No
G Average glycine composition (%) 0 6.5 7.3 No
FWY Average FWY composition (%) 0 8.4 7.6 No
signal Have signal sequences(%) 0 15 8 No
PS00015 Contain PS00015 (nuclear localization signal

peptide) prosite motif (%)
0 6. 5.4 Yes

PS00013 Contain PS00013 (membrane lipoprotein
peptide) prosite motif (%)

0 0.5 0.4 Yes

PS01129 Contain PS01129 (enzyme involved in RNA
metabolism) prosite motif (%)

0 0 0 Yes

PS00018 Contain PS00018 (EF-hand calcium-binding
domain) prosite motif (%)

0 0.4 1.4 Yes

PS00030 Contain PS00030 (RNA recognition) prosite
motif (%)

0 0.1 0.8 Yes

This Table reports the number of times that a feature is found in the decision trees shown in Figures 1 and 2. Some of the features
that appear in more than one tree may still exhibit no distinct difference between all the targets and those that have been determined
structurally (columns 4 and 5). This occurs because certain features have more effect in different stages of the structural genomics
pipeline, such as expression and purification, but not necessarily as great an influence on whether a protein can become characterized
structurally.

a Sources include BIND,47 – 49 DIP,43 – 45 MIPS,35 – 39 Cellzome (http://www.celzome.com) databases and datasets from various yeast
two-hybrid experiments.40 – 42
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non-polar residues; and length of the protein corre-
late with a tendency to be structurally determined.

Within the high-throughput structural genomics
pipeline, there are many stages in the process that
contribute to the attrition of proteins. Each step
has its own selective conditions that affect whether
a protein target advances to the next step. In order
to identify protein characteristics most influential
in achieving the next level in the high-throughput
experimental determination, random forest and
decision tree analyses were run on proteins that
were successfully cloned, expressed, or purified
(Figures 1 and 2). The tree nodes in Figures 1 and
2 represent the probability that proteins that satisfy
the rule will be successful. The numbers to the
right and left of the node are the numbers of
proteins that are successful and those that are not.
The sum of the two numbers at each node is the
total number of proteins that satisfy the rule or set
of rules. To aid experimental design further, an
additional decision tree was created (Figure 2)
using the same datasets as in Figure 1 but without
“meta-descriptors” such as COG analysis or bind-
ing partner information. The evolution of these
features is traced through the pipeline figures
(Figure 3). Some protein features such as COG
assignment and protein sequence length are found
in both the pipeline analyses and in the overall
structure decision tree. It is noted that at each
stage of the protein determination pipeline, certain
features appear to be more influential than others.

Tree-based analysis on targets that have been
expressed suggests COG assignment, sequence
length, and pI values are important features that
affect the outcome. These results are reflected in
the pipeline figure analysis (Figure 3), where there
are significant differences in these features between
cloned but not expressed proteins and expressed
proteins. Out of the 14,385 cloned protein targets
in this analysis, 3764 have a COG assignment and
a pI value below 5.9 (Figure 1(c)). The decision
tree analysis suggests that cloned proteins meeting
these criteria have a better chance (73%) of being
expressed compared to all cloned targets (58%)
that are expressed.

In contrast to these findings found for expressed
proteins, purified proteins (Figure 1(d)) have
different determining characteristics that include
the percentage composition of charged residues
such as aspartic acid and glutamic acid, and the
percentage sequence composition of asparagine
and glutamine amino acids. This suggests that an
optimal combination of aspartic acid, glutamic

acid, asparagine, glutamine, and lysine sequence
composition can increase the chance of expressed
proteins to become purified from 46% to 77%
( p-value 4.1 £ 10250).

Similarly, the tree analyses identify protein
features such as methionine and alanine per-
centage sequence composition that can affect the
outcome of whether a purified protein becomes
structurally determined (Figure 1(e)). The decision
tree analysis shows that proteins with a very low
content of methionine (less than 0.3%) and alanine
composition less than 8.5% have a 67% chance of
being crystallized ( p-value 3.4 £ 1028).

Solubility

Since solubility is an important determinant for
whether a protein is amenable to structural deter-
mination, an analysis was performed to find
protein characteristics that influence the outcome
of a protein’s solubility. Serine percentage compo-
sition is shown to be the major determinant in
determining solubility. Other predictors of solu-
bility such as conservation across organisms
(COGs) and charged residue composition are
similar to the other tree analyses performed on the
various stages of the structure determination pipe-
line, confirming the significance of a protein’s
solubility in its amenability to high-throughput
experimentation.

Analysis of specific structural genomics
centers

Decision tree analysis was performed on six sep-
arate structural genomics centers: the Northeast
Structural Genomics Consortium (NESG), the Joint
Center for Structural Genomics (JCSG), the
Mycobacterium tuberculosis Structural Genomics
Consortium (TB), the Midwest Center for Struc-
tural Genomics (MCSG), the Montreal-Kingston
Bacterial Structural Genomics Initiative (BSGI),
and the Berkeley Structural Genomics Center
(BSGC). These groups each have their own separ-
ate initiatives with differing methods of target
selection, cloning, and purification.8 The decision
trees in Figure 4 were performed to identify
important protein properties that would influence
a target’s amenability to be determined structurally
within each consortium. The resulting diverse trees
illustrate the unique approach that each of the
consortia has taken.

It is notable that more than half of the targets

Table 2. Random forest analysis

Importance
ranking

Structure/
no structure

Cloned/
uncloned

Expressed/
cloned

Purified/
expressed

Structure/
purified

Soluble/
insoluble

1 GAVLI I COG DE GAVLI S
2 DE Q Length NQ A DE
3 SCTM AVILM Hphobe pI C COG
4 S Sheet DE COG M SCTM
5 DENQ Length pI GAVLI pI Length
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Figure 1. Decision tree analysis of two subsets of protein targets: (a) structurally determined versus not structurally
determined; (b) cloned versus not cloned; (c) expressed versus cloned but not expressed; (d) purified versus expressed
but not purified; (e) structurally determined versus purified but not structurally determined; and (f) soluble versus not
soluble. The boxed values in the terminal nodes show the probability of a successful outcome at each node. To the
right of the node, the value represents the number of successful proteins and the value to the left of the node denotes
the number of proteins that were unsuccessful. The bracketed number at the root of the tree is the number of total
proteins analyzed.
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that are not determined structurally can be selected
by the top three rules in each of the consortia
decision trees. The results suggest that each
consortium has its own methods of target selection,

cloning, and protein production. The decision tree
analysis is able to highlight patterns of successes
for these consortia. For example, the NESG
(Figure 4(a)) seems to be more successful with

Figure 2. Decision tree analysis of two subsets of protein targets with only fundamental descriptors.
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Figure 3. Pipeline figure analysis of: (a) percentage of proteins that belong to COGs; (b) average percent of GAVLI
percent composition; (c) percentage of proteins that have minimum hydrophobicity scores below 21 on the GES
scale; (d) number of hydrophobic residues within hydrophobic stretches below 21 on the GES scale; (e) average pro-
tein length; (f) average percentage of DE percentage composition; (g) average number of binding partners based on
the MIPS complex catalog; (h) percentage of proteins that contain signal sequences; and (i) average normalized low-
complexity values. For proteins containing these features, stages where possible “bottlenecks” can occur are presented
in the pipeline figures. The pipeline figures show the mean values and their standard errors. The numbers in parenth-
eses are the actual number of proteins at each stage in the structural genomics pipeline.
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Figure 4. Decision tree analysis of two subsets of data from targets that are not structurally determined and those
that are. This analysis is performed on data from: (a) the Northeast Structural Genomics Consortium (NESG); (b) the
Joint Center for Structural Genomics (JCSG); (c) the M. tuberculosis Structural Genomics Consortium (TB); (d) the
Midwest Center for Structural Genomics (MCSG); (e) the Montreal-Kingston Bacterial Structural Genomics Initiative
(BSGI); and (f) the Berkeley Structural Genomics Center (BSGC). The boxed values in the terminal nodes show
the probability of a successful outcome at each node. To the right of the node, the value represents the number of
structurally determined proteins and the value to the left of the node denotes the number of proteins that were
unsuccessful. The bracketed number at the root of the tree is the number of total proteins analyzed.
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proteins that have more than 12% aspartic and
glutamic acid and protein lengths of less than 112
amino acid residues. The NESG targets are
comprised mostly of small (,340 amino acid
residues) prokaryotic and eukaryotic proteins,
and, generally, smaller proteins tend to have a
higher concentration of charged residues than
larger ones. Similarly, the BSGC (Figure 4(f))
seems to achieve better results for protein targets
with protein lengths less than 346 amino acid
residues and proteins that are conserved across
organisms. Since the data collected from TargetDB
for each consortium do not distinguish between
targets that have not been determined structurally
and those that cannot be determined structurally,
these results may have alternately served to high-
light certain targets within each consortium that
have progressed further through the pipeline.

Main protein features

Conservation across organisms

Protein features found commonly in the decision
trees are indicated in Table 1, which illustrates the
differences between the subset containing all the
targets and the subset consisting of targets that
have been determined structurally. These results
highlight which features differ the most between
the two subsets. Most of the protein characteristics
found commonly in the decision trees also contrast
markedly between the two subsets. The percentage
of proteins that have COGs rises from 59% in all
the targets to 85% in targets that have been deter-
mined structurally ( p-value 1.4 £ 10224).

Pipeline figures (Figure 3) can show where com-
mon bottlenecks occur in each step of protein
structure determination process. At each stage of
the pipeline, the number of total proteins is
represented in parentheses, and the values of the
characteristics of interest are shown. Of the 27,711
protein targets, so far 14,767 have been cloned,
8587 expressed, 4115 purified and 370 determined
structurally. The results from the tree-based
analyses corroborate with the data shown in the
pipeline figures. For example, the tree analyses
indicate that COG assignment is a major determi-
nant for whether a protein will be expressed. For
the COG assignment protein characteristic
(Figure 3(a)), we can see in the pipeline that a
major bottleneck occurs at this stage. Of proteins
that are cloned but not expressed, 53% have COGs
compared to 70% in expressed proteins ( p-value
2.2 £ 10292). Most proteins are expressed in
bacteria, so targets with bacterial counterparts
have a better chance of being expressed than those
that do not. Eukaryotic proteins expressed in
bacterial vectors typically have a lower success
rate than bacterial proteins.

COGs are families of proteins found in many
organisms. Generally, more studies have been per-
formed on these proteins due to their presence
in various organisms, which can increase the

probability that these proteins will be determined
structurally. Studying proteins that belong to
COGs is one of the most successful methods of
tackling crystal structure determination,18 since
these proteins can be cloned and purified from
many organisms. This study highlights the utility
of multiplex gene expression system analysis.

Hydrophobicity

In Table 1, the percentage of small hydrophobic
protein residues (GAVLI) increases from 34.6% in
the subset containing all the target proteins to
38.4% in the subset consisting of proteins that are
structurally determined ( p-value 9.6 £ 10219).
However, the average hydrophobicity (hphobe)
and the average number of hydrophobic residues
within hydrophobic stretches (hp_aa) are shown
to decrease between the subsets of all target
proteins and structurally characterized proteins.
Small hydrophobic residue composition (GAVLI)
was found to be one of the determinants for
whether proteins could be determined structurally.
Structurally determined proteins had an average of
38.4% GAVLI composition as opposed to purified
but not structurally determined proteins that had
an average of 36% GAVLI composition ( p-value
3.6 £ 1027).

Through target selection, most proteins with
predicted transmembrane regions have been
removed. However, target proteins that are more
hydrophobic are usually less amenable to high-
throughput experimentation, probably due to
solubility issues. Overall, 30% of all the targets
have hydrophobic stretches with minimum hydro-
phobicity scores below 21 (based on the GES
scale19, see Methods) compared to the 21% that are
structurally determined ( p-value 1.4 £ 1024).
Figure 3(c) highlights two bottlenecks in the pipe-
line that could occur, based on the protein’s hydro-
phobicity features. Of the proteins that are cloned
but not expressed, 36% have hydrophobicity scores
below 21 compared to a score of 25% for
expressed proteins ( p-value 7.2 £ 10236). Similarly,
while 29% of proteins that are expressed but not
purified have low hydrophobicity scores, only
20% of purified proteins contain highly hydro-
phobic patches ( p-value 3.1 £ 10222). This seems to
confirm the idea that hydrophobic proteins are
less likely to be both expressed and purified due
to their decreased solubility.

In general, all the protein targets had an average
of 15 hydrophobic residues within hydrophobic
stretches compared to structurally determined
proteins, which had an average of seven hydro-
phobic residues ( p-value 3.8 £ 1025). For proteins
with a high number of hydrophobic residues
within hydrophobic stretches, the pipeline analysis
suggests that two bottlenecks can occur at the
expression stage and the purification stage. The
decision tree for the purification stage indicates
that this feature is a strong determinant for
whether a protein can be purified. The expressed
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proteins that do not become purified have a high
number of hydrophobic residues, 16.3, compared
to the purified proteins that have only 6.5 hydro-
phobic residues within hydrophobic stretches
( p-value 7.7 £ 10230). This suggests that proteins
with large or many hydrophobic stretches may not
fold properly in the experimental conditions being
used. The cloned proteins have an average of 16.3
hydrophobic residues within a hydrophobic stretch
( p-value 9.3 £ 1028). Cloned proteins that were not
expressed had an average of 22.7 hydrophobic resi-
dues compared to expressed proteins, which had
an average of 11.6 hydrophobic residues ( p-value
1.0 £ 10263), indicating that proteins with many
hydrophobic stretches may have more difficulty in
being expressed, due to their decreased solubility.

Protein length

Protein length was another feature that
decreased from 291 amino acid residues in the
data set containing all the target proteins to 243 in
the data set consisting of proteins that were deter-
mined structurally ( p-value 3.2 £ 1024). The tree
analyses suggested that the outcome of whether a
protein was expressed could be correlated to its
sequence length. The pipeline analysis results cor-
roborated this finding. While cloned proteins had
an average length of 276 residues ( p-value
4.8 £ 10225), the average protein length of cloned
but not expressed proteins was considerably
higher at 305 residues, compared to expressed
protein, which had an average protein length of
254 ( p-value 2.6 £ 10234). One explanation is that
large proteins could contain multiple domains,
which increases the difficulty of experimental
analysis.

The histogram of the protein lengths (Figure 5)
demonstrates that the distribution of protein
lengths is different between proteins that are
expressed and those that are cloned but not
expressed. There are more expressed than non-
expressed proteins that have a length of less than
400 amino acid residues. However, there is a larger
number of cloned but not expressed proteins for
proteins with lengths of 400 to 2000 amino acid
residues. The analysis suggests a possible
correlation between a protein’s length and its
amenability to high-throughput structural
determination.

Composition of specific amino acids

The percentage composition of small negatively
charged residues (DE) increased from 12.7% in all
the protein targets to 14.2% in structurally
determined targets. The bottleneck for this feature,
indicated in Figure 3(f), was found in the purifi-
cation stage, where purified proteins had 14.2%
DE (Asp/Glu) composition as opposed to 12.6%
expressed proteins that were not purified
( p-value ¼ 3.3 £ 102101). The percentage compo-
sition of DE was highlighted in several tree

analyses including structure determination, purifi-
cation, and solubility. Highly charged amino acid
residues interact favorably with solvent molecules,
so proteins with a higher percentage of acidic
amino acid residues have a higher probability of
being soluble. This is corroborated in the results of
the decision tree analyses, where this feature was
highlighted in the purification and solubility deter-
mination trees.

The percentage composition of serine decreased,
on average, from 6.7% in all the protein targets to
5.2% in structurally determined targets ( p-value
3.0 £ 10222). Serine was highlighted in the
solubility tree analyses, suggesting its influence on
a protein’s solubility. However, it is not clearly
understood how the decrease in serine com-
position affects a protein’s amenability to high-
throughput experimental analysis.

Number of binding partners

Based on the interaction information found in
the MIPS complex catalog (complex_partners), the
average number of binding partners for proteins
that are structurally determined is less than all the
protein targets, suggesting that some proteins may
require the presence of their binding partners in
order to fold properly and, in turn, to be deter-
mined structurally.20 – 23 The pipeline figure analysis
indicates that a bottleneck for this feature occurs at
the purification stage, where proteins that are
expressed but not purified have an average of 0.96
binding partner compared to those that become

Figure 5. Histogram of expressed compared to non-
expressed protein lengths.
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purified, which have an average of 0.7 binding
partner ( p-value 0.06). The average number of
binding partners decreases even further from the
stage when a target is purified to the stage that it
becomes determined structurally, suggesting that
it is easier to purify and crystallize proteins that
have few binding partners. The reported average
number of binding partners for all of these
proteins is less than 1, due to the fact that less
than 4% of these proteins are functionally shown
to have binding partners. As more functional
information becomes available, the correlation
between the number of binding partners and a pro-
tein’s amenability to high-throughput structural
determination will most likely become more
pronounced.

Occurrence of signal peptides

Signal peptides control the entry of proteins into
secretory pathways.24 – 26 As the protein is trans-
located through the membrane, the signal
sequence is cleaved off, releasing the mature
protein. The presence of a signal sequence was not
highlighted as a determining factor in any of the
decision tree analyses. However, there was a
general decrease from 14.5% in all the targets to
8.2% in the structurally determined proteins
( p-value 5.3 £ 1024). The pipeline analysis suggests
that expressed proteins have a lower percentage
(13%) of signal sequences than proteins that are
not expressed (16.5%) ( p-value 1.2 £ 1027). Simi-
larly, 10.6% of purified proteins have signal
sequences compared to 15.7% of expressed but not
purified proteins ( p-value 9.3 £ 10212). Since
secreted proteins are exported, their native
environment is most likely extracellular. However,
the current expectation profile for proteins that are
expected to be successful are proteins that are
both cytoplasmic and monomeric.

Features found not to be predictors

All the target proteins have an averaged normal-
ized low-complexity value of 14.4 compared to
structurally determined proteins, which have a
value of 13.6 ( p-value 0.07). While there is a small
decrease, this difference is probably not significant.
However, cloned proteins have an average low-
complexity value of 14.6 compared to expressed
proteins, which have a value of 12.8 ( p-value
2.1 £ 10254). Through target selection, most proteins
with long low-complexity regions have been
removed,4,27 which may indicate why there is little
change in this feature between all the targets and
those that become structurally determined.

There is little difference between the percentage
of proteins containing a nuclear localization signal
(NLS) motif (PS00015) in the structurally deter-
mined subset and all the targets. There is a small
increase from 4.3% of all the targets to 4.9% of the
structurally determined targets that contain the

NLS motif. However, this result is not found to be
significant ( p-value 0.52).

Other features, such as cysteine composition and
KR (Lys/Arg) composition, did not show a distinct
change between the structurally determined subset
and the total targets subset. It was thought that
proteins containing disulfide bridges might be
more difficult to crystallize. Similar to proteins
with signal sequences, proteins with disulfide
bridges are usually extracellular. However, the
amount of cysteine in proteins that were crystal-
lized compared to those that were not did
decrease, but not substantially. Additionally, the
percentage composition of the charged residues,
DE (Asp/Glu), increased in proteins that were
structurally determined compared to all the
protein targets. We expected to observe a change
in the percentage composition of other charged
residues, such as KR (Lys/Arg). However, there
was very little difference in this feature between
the structurally determined subset and all the
targets.

Statistical issues using structural genomics
datasets

Since the data collected from the TargetDB is
basically a “snapshot” of the structural genomics
progress, it is not possible to distinguish between
targets that have failed at a certain stage from
those targets that are yet to be studied. The subset
of successful proteins can be partitioned into a
“white” (or successful) subset. However, the
remaining proteins are partitioned into a “gray”
subset, rather than a completely unsuccessful
(“black”) subset, since some of these proteins
could be successful if attempted. This can create
more difficulty in making accurate conclusions
when trying to determine which features are
important to the amenability of a protein to high-
throughput experimentation. While the presence
of potential false negatives can decrease the
strength of prediction, our analysis shows a
statistically significant correlation between certain
protein features and their amenability to being
determined successfully. The issue of having false
negatives would manifest itself more greatly if the
successful subset of data was just as, or almost the
same as, the negative subset of data with respect
to the features being studied, thereby creating
non-statistically significant differences. However,
since the protein features in this subset of proteins
are statistically distinct from the protein features
found in the rest of the population, this indicates
that there is enough information to distinguish the
two (unbalanced) sets even from this smaller suc-
cessful subset. With the accumulation of more
“successful” data, more information will be
learned to increase the ability for predictions.

Using these machine learning techniques, we are
able to identify common trends or correlations
between specific protein properties and the success
of an outcome at each stage of the structural
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genomics pipeline. This analysis uses standard
tools that have been employed widely in such
fields as econometrics and epidemiology, and
produces straightforward, robust statistical con-
clusions. However, these techniques cannot be
used directly to establish causal relationships.
Incorporating general biological information, we
are able to utilize statistical information to make
inferences about the relationships between factors
and outcomes, and to determine whether these
relationships are plausible.

More specifically, the correlations found in these
high-throughput experiments can be defined as
either causal or non-causal. The causal correlations
are based on protein properties and features of a
particular experiment. For instance, the results
show that less hydrophobic proteins have a better
chance of being purified. For the purification
stage, the rate of success is highly dependent on a
protein’s fundamental properties. Alternatively,
non-causal correlations are affected by other
factors, such as the rate that scientists can start
analyzing proteins at each stage of the process or
biases in the way targets have been selected or
prioritized for cloning, expression, crystallization,
etc. These non-causal relationships have less effect
in later stages of the structural genomics pipeline
where there are fewer proteins. However, they
seem to be more predominant in earlier stages of
the pipeline, such as in the cloning step, where the
number of proteins selected outweighs the
resources available.

Interpretation of pipeline figures

Because of the distinction between causal and
non-causal correlations that we elaborated on
above, we have to be particularly careful in inter-
preting the pipeline figures with respect to cloning.
It is known that cloning of proteins is usually
believed to be successful. This issue has ramifica-
tions for interpreting the pipeline figures. A small
analysis we have done within the NESG con-
sortium has shown that most proteins can be
cloned with approximately 95% success (somewhat
higher cloning success rates for prokaryotic
proteins and somewhat lower success rates for
eukaryotic proteins). Therefore, most of the statisti-
cal differences that we observed between the
selected and cloned parts of the pipeline do not
reflect intrinsic properties of proteins. Rather, they
reflect subtle sociological biases in the way the
various structural genomic centers have gone
about picking their targets for cloning. Thus, in
interpreting the pipeline figures, if we want to
understand the appropriate statistics of each stage
we can start looking at the pipeline figures from
the cloning stage on, up to expressed, purified,
and so forth. Each of these steps represents a real
statistical difference attributed to the properties of
proteins.

However, there is another way that we can look
at the pipeline semantics. In a very global manner,

we can compare the properties of proteins that
have structures to the entire universe that is
tackled by structural genomics. The latter is essen-
tially the proteins of TargetDB. In this way, we can
compare the very top of the pipeline schematic all
the way to the bottom, taking into account that
almost all of the proteins in the selected pool
could be cloned if attempted. This gives us an
idea of the overall statistical differences between
proteins that are broadly targeted by the centers
versus those that have been solved successfully.

Important discoveries for future data collection
in TargetDB

From this comprehensive analysis we can glean
a number of points that will help us to better
gather data for TargetDB in the future. First, it is
important to gather negative as well as positive
information. Second, it is critical to distinguish
between proteins with negative information in the
pipeline and proteins that are waiting in the pipe-
line. In particular, it is critical to track (i) what is
attempted, (ii) what is successful, and (iii) what
fails, at each step of the structure production pipe-
line. Therefore, it might be useful to add a number
of categories to TargetDB including more detail
about the status of each protein.

As the recognition in the importance of charac-
terizing structural genomics information increases,
more detailed mechanisms for capturing the data
will greatly improve and enable further data
mining efforts. Here, we have shown the general
utility of performing this type of analysis on infor-
mation gathered from the structural genomics
efforts. We identify protein features that correlate
with successful outcomes at each stage of the pipe-
line. We demonstrate plausible consistencies
between these identified protein properties and
the effect that they may have in determining the
outcome of a protein’s progress through the struc-
tural genomics pipeline. The results of this analysis
can aid researchers in the choice of better target
proteins, and can increase the efficiency of high-
throughput experimentation.

Conclusions

The structural genomics initiative will produce a
vast amount of experimental information that can
provide insights into protein structure and func-
tion. As the numbers of solved structures are
increasing gradually, data collected from these
efforts can aid in optimizing and accelerating the
structure determination process. This study
suggests that several key protein characteristics,
including protein length, composition of negatively
charged and polar residues, hydrophobicity,
presence of a signal sequence, and COG assign-
ment, can determine whether a protein will pro-
gress through the stages of the structure
determination pipeline. Proteins with an optimal
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combination of these features can be selected
rapidly and moved through the pipeline more effi-
ciently. Additionally, using these parameters, it is
possible that less ideal proteins can be re-engin-
eered to increase their chance for being determined
structurally.

Methods

Targets

The data set of protein targets was collected on
February 9, 2003 from TargetDB, a target registration
database that includes target data from worldwide
structural genomics and proteomics projects. This subset
consisted of 27,711 proteins and was inserted into the
SPINE database for further analysis.

Random forest analysis

The random forest analysis combines two powerful
ideas in machine learning techniques: bagging and ran-
dom feature selection. Bagging (bootstrap aggregating)
uses the final vote of bootstrap replicates to create a clas-
sifier. The random forest analysis grows a random tree
for each bootstrap sample by choosing the best split at
each node from a small number of randomly selected
predictors.

For each data set, 5000 bootstrap samples were used
and seven features (the square-root of the total number
of features) were selected randomly at each node split.
One-third of the original training set was omitted from
each bootstrap sample. These out-of-bag (oob) samples
were placed back into the trees and a final prediction
was based on the votes of these tree predictions. The
error of each data set was calculated based on the per-
centage of incorrect predictions made out of the total
number of predictions. The error rates for these data
sets range, on average, from 15% to 30%.

The importance for each variable was measured by
permuting all the values for the variable in the oob
samples. When these values were placed back into the
tree, a new test set error was computed. The amount
that the test error differs from the original test error was
defined as the importance of the variable.

Decision tree analysis

Decision trees were constructed using the R tree
model software†28 with default parameters of minimum
node deviance of 0.1, minimum node size of 10, and
cost complexity pruning of 5. Targets with missing
values were omitted, resulting in 27,267 total protein tar-
gets analyzed. The overall structure determination tree
used a subset of proteins that were determined in com-
parison to all the rest of the proteins that were not. Cor-
respondingly, the cloning determination tree used a
subset of proteins of all cloned target proteins compared
to all target proteins that were not cloned. Decision trees
were constructed for the expressed versus cloned
but not-expressed, purified versus expressed but not-
purified, and structure versus purified but not struc-
turally determined subsets. Under no associations, the

distribution of the positive outcome out of the total
number of samples (i.e. 14,385 cloned out of the total
27,267 sample) was assigned randomly to each of the
terminal nodes. The mean and variance of the terminal
nodes were calculated, and the approximate p-value for
each terminal node was derived from its Z-score.

Cross-validation is a commonly used technique to
estimate the error rate of future predictions. The ipred
package‡ in R was used to perform a tenfold cross-
validation on each of the decision trees, where each
successive application of the learning procedure used a
different 90% of the data set for the training and the
remaining 10% for testing. The estimated error was
calculated by taking the sum of the number of incorrect
classifications obtained from each one of the ten test sub-
sets and dividing that sum by the total number of
instances that had been used for testing. The average
prediction success over all the decision trees in Figure 1
was 76%. For the decision trees in Figure 4, the cross-
validation approach resulted in an overall prediction
success of 96%.

Data analysis

Amino acid composition

Amino acid compositions were calculated by taking
the fraction of the total number of the amino acid
residues by the total number of amino acid residues in
the whole sequence.

Hydrophobicity

Hydrophobicity scores were measured using the GES
scale,19 where the lower the score, the more hydrophobic
the amino acid is. Hydrophobic residues within
hydrophobic stretches were calculated by counting
all the residues within a sliding 20 residue window
with a hydrophobicity score below 21.0 kcal/mol
(1 cal ¼ 4.184 J) on the GES hydrophobicity scale.
Minimum hydrophobicity scores were calculated using
the minimum hydrophobicity score of all the sliding
20 residue windows for each protein.

Signal sequences

Signal sequences were measured by implementing a
pattern match for sequences containing a charged
residue within the first seven amino acid residues
followed by a stretch of 14 hydrophobic residues.

Low-complexity scores

Entropic low-complexity scores were calculated using
the SEG program.29 Long low-complexity regions were
identified with SEG using standard parameters with a
trigger complexity K(1) of 3.4, an extension complexity
K(2) of 3.75, and a sequence window length of 45. Short
low-complexity regions were identified using a trigger
complexity K(1) of 3.0, an extension complexity K(2) of
3.3, and a sequence window length of 25.

† Team, R. D. C. (2003). R: a language and environment
for statistical computing. http://www.R-project.org

‡ Peters, A. & Hothorn, T. (2003). Improved Predictors.
http://cran.r-project.org/src/contrib/PACKAGES.html
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Motifs

Prosite motifs were identified using the ps_scan30

program to scan the Prosite database for known motifs.31

Binding partners

A commonly used method for identifying protein–
protein interactions is to utilize known binding infor-
mation in one species to predict interactions of proteins
in another species.32 – 34 Interologs are pairs of potential
orthologs of known interacting partners. We employed
interolog information to identify target-binding partners
by mapping the known binding partners of a target’s
yeast interolog to itself. The complex_partners values
were measured by calculating the average number of
known binding partners for the yeast interolog found in
the MIPS35 – 39 complex catalog and mapping it to the
protein target. Comparatively, the any_partners values
identified the average number of known binding part-
ners for a specific target’s yeast interolog using various
sources35 – 49 of experimentally determined information
including the MIPS database.

Statistical significance for pipeline figures

To test whether the features illustrated in Figure 3
show an increasing or decreasing trend from the total
target population of 27,711 proteins to those 370 proteins
with identified structures, we conducted trend tests in
the following form:

T ¼
XC

i¼1

wiyi

where C is the number of classes above the baseline total
population, wi is the weight for the ith class, and yi is the
observed mean or ratio related to the feature of interest
in the ith class. In our case, C ¼ 4, which corresponds to
the cloned proteins, expressed proteins, purified pro-
teins, and proteins with identified structures. The value
of yi is the proportion of the proteins with a given feature
in the ith class for Figure 3(a), (c), and (h), whereas the
value of yi is the average feature value in the ith class
for the other features in Figure 3. The weights are 1, 2,
3, 4 for an increasing trend for features in Figure 3(a),
(b), (f), and (i). The weights are 4, 3, 2, and 1 for a
decreasing trend for the other features.

To assess the statistical evidence of a trend in the data
based on T, we calculated the mean and variance of T
under the null hypothesis of no trend conditional on the
feature distribution in the baseline total population con-
sisting of 27,711 proteins. It can be shown that when the
feature of interest is binary, i.e. a given protein either
has or does not have this feature:

EðTÞ ¼
XC

i¼1

wiy0 and VarðTÞ

¼
XC

i¼1

bi

 !
y0ð1 2 y0Þ2

XC

i¼1

bivi

where:

bi ¼
XC

j¼i

wj
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2
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Ni
; v1 ¼ 0; viþ1

¼ ð1 2 aiÞvi þ aiy0ð1 2 y0Þ; for i $ 1;ai

¼
Ni21 2 Ni

Ni21 2 1

1

Ni

Ni is the number of proteins in the ith class, N0 is the
number of proteins in the total population, and y0 is the
proportion of proteins having a given feature in the total
population. The statistical significance of the observed
increasing trend is:

1 2F
T 2 EðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðTÞ
p

	 


and the statistical significance of the observed decreasing
trend is:

F
T 2 EðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðTÞ
p

	 


where F is the cumulative function of the standard
normal distribution.

When the feature of interest is a continuous one, it can
be shown that, under the null hypothesis of no trend:

EðTÞ ¼
XC

i¼1

wiy0 and VarðTÞ ¼
XC

i¼1

gi

 !
s2

0

where gi ¼ ð
PC

j¼i wjÞ
2ððNi21 2 NiÞ=Ni21Þð1=NÞ, y0 and s2

0
are the mean and variance of the given feature in the
total population, respectively. For the observed trend
test statistic, we can use the above mean and variance
under the null hypothesis to assess statistical significance
level for an increasing or decreasing trend as above for
the binary case.
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