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Abstract

High-throughput structural proteomics is expected to generate considerable amounts of

data on the progress of structure determination for many proteins. For each protein this

includes information about cloning, expression, purification, biophysical characterization,

and structure determination via NMR spectroscopy or X-ray crystallography. It will be

essential to develop specifications and ontologies for standardizing this information to

make it amenable to retrospective analysis. To this end, we created the SPINE database

and analysis system for the Northeast Structural Genomics Consortium. SPINE, which is

available at bioinfo.mbb.yale.edu/nesg or nesg.org, is specifically designed for enabling

distributed scientific collaboration via the Internet. It was designed not just as an

information repository but as an active vehicle to standardize proteomics data in a form

that would enable systematic data mining. The system features an intuitive user interface

for interactive retrieval and modification of expression construct data, query forms

designed to track global project progress, and external links to many other resources.

Currently, the database contains experimental data on 985 constructs, of which 740 are

drawn from M. thermoautotrophicum, 123 from S. cerevisiae, 93 from C. elegans, and

the remainder from other organisms. We developed a comprehensive set of data mining

features for each protein, including several related to experimental progress (e.g.

expression level, solubility, and crystallization) and 42 based on the underlying protein

sequence (e.g. amino-acid composition, secondary structure, and occurrence of low-

complexity regions). We demonstrate in detail the application of a particular machine

learning approach, decision trees, to the tasks of predicting a protein's solubility and

propensity to crystallize based on sequence features. We are able extract a number of key

rules from our trees, in particular that soluble proteins tend to have significantly more

acidic residues and fewer hydrophobic stretches than insoluble ones. One of the

characteristics of proteomics data sets, currently and in the foreseeable future, is their

intermediate size (~500 to ~5000 data points). This creates a number of issues in relation

to error estimation. Initially, we estimate the overall error in our trees based on standard

cross-validation. However, this leaves out a significant fraction of the data in model

construction and does not give error estimates on individual rules. Therefore, we present

alternate methods to estimate the error in particular rules.
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Introduction

The role of computational techniques in biological research is certain to increase with the

advent of genomics. Databases in particular have become invaluable tools in molecular

biology. The current landscape of biological databases includes large, general purpose

repositories for nucleotide sequences such as GenBank [1], DDBJ [2], and EMBL [3] and

protein sequences like PIR [4], SWISS-PROT [5], and the Protein Data Bank [6].

Likewise, there are many specialized databases storing information related to model

organisms such as SGD [7], MIPS [8], and FlyBase [9], comparative genomics [10,11],

gene expression [12,13], protein-protein interactions [14,15], and protein motions [16].

The PartsList [17] system encapsulates the results of surveying the occurrence of folds

and protein features in genomes [18,19], while the Presage database [20] was recently

developed for target selection in structural genomics. Software tools are also available for

the creation of project-specific laboratory information management systems (LIMS), such

as LabBase [21].

Many biological databases are developed and maintained strictly for warehousing

purposes, without consideration of analyses that may be performed on the data.

Conversely, computational studies are often performed outside of the context of

information management, without a clear connection to biological reality. Our work

explores a fusion of these two processes, where database design is influenced by

analytical requirements.

Such an undertaking requires a centralized repository to integrate and manage the data

generated, coupled with strategies for subsequent computational analysis. By maintaining

a shared infrastructure accessible to all the participating members of a project, distributed

access to large subsets of data is possible. This not only promotes collaborative effort

among investigators by providing a common information exchange platform, but also

avoids costly and time-consuming duplication of experimental work. Further, data is

maintained in a consistent format across many laboratories and investigators, promoting

further analysis.
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To this end we have developed the SPINE database and analysis system, an integrated

approach to interactive database system design and computational analysis in a

distributed framework, using the recently formed Northeast Structural Genomic

Consortium (www.nesg.org) as a model for multi-laboratory collaborative research. The

system is designed to generate standardized data files from user-definable subsets of the

proteomics information entered into the database, which are then used for classification

tasks. Key issues in effective data mining are introduced, with emphasis on decision

trees, a supervised machine learning approach. We conclude with a discussion of

prediction results for several macromolecular properties based on features derived from

the database contents.

Database System Requirements

SPINE (structural proteomics in the Northeast) was designed for the Northeast Structural

Genomics Consortium (NESG), a multi-institutional collaboration for the high-

throughput determination of protein structures on a genomic scale, with an emphasis on

model eukaryotes. The project coordinates the identification of suitable target proteins

and the production of expression constructs from which proteins will be purified,

followed by biophysical characterization via circular dichroism, and a series of NMR or

X-ray crystallography studies to determine tertiary structures. Experimental data

generated by this project was used for the development of a distributed data archival and

analysis framework suitable for laboratory information management, standardization of

experimental parameters, and data mining techniques. Several views of the database

developed for this project are shown in Figure 1.

A critical issue in designing a system of this kind is determining the fundamental “unit”

to be tracked by the database. In many cases this process is straightforward. For example,

a database suited to classical genetics would most likely record parameters related to the

expression of individual genes under various experimental conditions and the function of
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their associated proteins. In this case, the fundamental unit of information would most

likely be the gene. However, in our case the solution is not so obvious, as a variety of

choices exist. A database record can be based on any number of entities, such as the

protein itself, a construct used to express the protein, a specific experimental preparation,

or a more abstract “target” representation encompassing multiple proteins in a particular

family. The most appropriate representation depends on the scope of the project and the

relative stability of the data types under consideration.

An obvious candidate for the fundamental database unit is the protein. However, in

certain instances homologous proteins from other organisms prove more experimentally

tractable than the actual target; this scenario would be a source of confusion when

maintaining a resource based on proteins. An alternative is to focus on the expression

construct made for a given protein. Multiple constructs can be made for a single protein,

because a construct could be designed to express only a single domain from a complex

protein, or contain a slightly altered protein sequence that aids in protein production and

structure determination. This one-to-many relationship between target proteins and their

associated expression constructs would imply that several database entries might be

related to the same target. A third option is to use the specific preparation associated with

each experiment, where a database record could represent a set of conditions by which a

protein sample is prepared. An immediate concern with this representation is that protein

preparations will vary constantly, requiring an unforeseeable number of relational tables

to accommodate their parameters.

Because multiple constructs can be generated for each target, the single protein

representation is too limited for our purposes. Conversely, experimental conditions for

individual protein preparations are highly variable, and it was decided that this data

should be compiled separately. From these candidates, it was decided that the expression

construct captured the most appropriate level of detail for this project. It was selected as

the basic unit to be tracked by the database, essentially recording the best experimental

results for the expression, purification, and characterization of each target protein.
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To address these requirements, software components were developed for entry and

updating of expression construct records, database searching, bulk data retrieval, and

tracking the global progress of the entire project. Intuitive HTML form-based interfaces

were implemented to facilitate distributed Internet access from participating laboratories.

The implementation of the database system is described in detail in Figure 2. The

modular organization of software components permits relatively straightforward

implementation of additional functionality. This aspect is independent from the

underlying database architecture, allowing a great deal of programming flexibility while

maintaining strict compliance to the standardized data types established for various

experimental parameters.

Database Fields

The SPINE database fields were compiled with subsequent computational analysis in

mind. Information having disparate formats and types would make data mining

impossible, so an important role of the system is the standardization of expression

construct data sets. Using a centralized data repository having a defined table structure,

information is maintained in a consistent format regardless of the investigator or

laboratory where the data originates. Another benefit is the introduction of numerical

values in place of the text descriptors sometimes used by experimentalists.

To accommodate the needs of various Consortium projects where different experimental

methodologies are used, principal investigators from several laboratories were involved

in the process of selecting the most appropriate information to be tracked by the system.

Fields from existing data sets were used to develop a consensus of experimental

parameters, and this was adapted to the current database framework.

A listing of the fields used for the prototype database is shown in Table 1. The

information maintained by the system initially comprised 63 fields for protein sequences,

cloning parameters, expression level and purification yield, and data derived from

biophysical characterization and structural biology experiments (oligomerization, CD,

HSQC, NMR, and X-ray crystallography). In addition, a number of fields are devoted to
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keeping track of the laboratory and investigator responsible for working with the target

protein, dates when experiments were performed, comments relating to experimental

conditions for each group of related fields, and variable access levels for individual

database records. The database is not intended to manage all aspects of experimental

research; rather it is designed to standardize and track key parameters related to structural

proteomics. However, the system does include user accounts, transaction history

information, and some lab management tables.

The development of this system is an ongoing project. Following the establishment of a

prototype database, additional features were implemented to reflect the needs of the

Consortium laboratories, and its schema was expanded over a number of relational tables

(Figure 3). The current design allows various groups of database fields to be accessed and

updated, depending on the type of experiments typically performed by different

investigators. Users may limit the parameters to be input for a database record to a subset

of fields that are relevant to their work by selecting forms specialized for NMR

spectroscopy, X-ray crystallography, etc. By using only those fields that are applicable to

a particular experimental process, navigating through long forms with potentially unused

elements is avoided.

Users of the database access the system through a password-protected interface. The

instantiation of individual user spaces aids in managing proprietary data associated with

each experimentalist. This modification is beneficial in terms of designing more

transparent user interfaces. For example, investigator profiles are maintained which keep

track of routinely used field values and experimental methods, allowing the system to

complete certain fields automatically.

For many experimental methods, a data file is generated comprising an entire set of

results distinct from the information tracked by the main database. The inclusion of these

parameters into the existing infrastructure would be beyond the scope of the system;

HSQC spectra, X-ray diffraction data, and NMR assignments can span large files that

would be impractical to incorporate directly into database tables. Instead, these are stored
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on a separate file server, and the associated URL addresses are recorded in construct

records and linked to each record display. Thus, a key feature of the system is

maintaining a central collection of pointers to additional experimental data sets. This

mechanism is, of course, extended to allow pointers into other information repositories

associated with the project, for instance, into a crystallization database or a list of targets.

We also link the system with other protein sequence and structure resources, such as

SWISS-PROT [5], ProtoMap [22], GeneCensus [17,18,19], PartsList [23], SCOP [24],

and CATH [25].

User Interaction and Dynamic Content Modification

The design of the system’s front end allows expression construct records to be entered,

edited, and retrieved by individual users without frequent intervention of a database

curator. An important goal in this work is to design a system that works in a practical

laboratory setting. That is, the software is operationally robust and straightforward, so

that using it on a regular basis will not disrupt workflow. The system provides a

consistent and intuitive user interface to complex database functions, as well as error

recovery features when conflicting or incomplete information is submitted. Search

functions were developed for the intelligent retrieval and display of information from the

database, as well as the ability to generate bulk dumps of large subsets of data records

and protein sequences in interchangeable file formats, including CSV and XML.

As experimental work progresses on a given target, additional data is collected which

may have been unavailable at the time its expression construct record was created.

Therefore, an essential requirement of the database is the ability to recall records to alter

or augment their associated information. Consequently, the contents of individual

database records are changing over time in a user-mediated fashion, in contrast to more

archive-oriented resources. This imposes additional sets of operational considerations,

requiring provisions to ensure internal ID consistency and overwrite protection when

users enter or modify database records.
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System Functionality

Data Entry and Editing

The creation of expression construct records is generally performed on a per-instance

basis, using a series of HTML forms. Database records are keyed on an identifier string

that can be selected by the investigator or generated automatically by the system. The

custom identifier feature is particularly useful in cases where a construct for a given

protein is derived from an organism different from the target organism in which the

protein originates. For example, the identifier HTEC5 could be used to represent the fifth

E. coli expression construct (EC) for a human target protein (H), originating from a

Toronto laboratory (T). The data entry procedure is designed to be simple and intuitive.

During the process of generating identifiers and creating new records, key parameters are

retained as subsequent web forms are encountered, to minimize effort and eliminate user

error. This process is depicted in Figure 4.

As new experimental data is accumulated, existing records must be augmented and

modified. This is accomplished via editor forms identical in layout to the data entry

forms. Database attribute values are recalled and inserted into their corresponding editor

fields, where they may be modified. After changes have been made and any additional

data have been entered, the record is updated to reflect the new information.

Searching the Database and Visualizing Progress

The retrieval of records from the database is accomplished through the use of a search

engine interface (Figure 5A), where a variety of terms may be selected and combined

with Boolean connectives. Based on the values of the elements submitted via the

interface form, the software builds an SQL query to execute against the database and

returns any records matching the search terms (Figure 5B). The subset of database

records returned by the search may be optionally downloaded as a CSV-formatted text

file, suitable for importing into another database or spreadsheet program. Individual

expression construct records are displayed in a static web page (Figure 5C), with database

fields organized in a logical hierarchy. A number of local and distributed Internet
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resources are automatically linked to record display pages, such as Protein Data Bank

searching, organism-specific databases, and specialized structural annotation reports.

To provide a global view of project growth, programs were developed to summarize the

nature of the database holdings, and illustrate the relative progress made on target

proteins (Figure 1A). Using a subset of the main search engine functionality, users can

recall sets of database entries and display them in a large table, organized to represent a

timeline in the structure determination process. Advanced features allow users to

reconfigure the display to generate a custom table that presents any combination of

database fields in lieu of the standard table layout.

Data Mining Applications for High-throughput Proteomics

The success of the high-throughput aspect of structural proteomics relies on the

optimization of target selection and experimental protocols. This, in turn, involves

identifying proteins that can be readily expressed, solubilized, purified, and crystallized

under a given set of standard conditions (i.e. the most tractable instances). These factors

will strongly influence whether or not a given protein is pursued for X-ray or NMR

structure determination. One of the main goals of the SPINE system was to capture the

data in a way that made it suitable for subsequent analysis. In the following sections, we

present a representative application: classification of soluble proteins using decision

trees. Before presenting the details, it is worthwhile to review some key elements of this

approach.

Machine Learning Concepts

The term machine learning applies to a wide range of computational methodologies.

However, the models most suitable for our applications belong to the class of algorithms

that employ supervised learning. Under supervised learning, the classification process

consists of two phases: training and testing. The set of all available examples or instances

(formally termed input vectors) is divided into two nonintersecting sets. The first set is
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used to train the model. During this phase, correct classifications of the examples are

known a priori. Supervised learning strategies rely on this information to adjust the

performance of the model until the classification error rate is sufficiently reduced.

Learning is no longer performed after training is completed; instead, unseen instances in

the test set are classified according to the partitioning established during the training

phase. The performance of a learning algorithm is determined by its ability to correctly

classify new instances not present in the initial training set.

The features of each sample can be represented as a vector that corresponds to a point in

an n-dimensional space. Classification is then performed by partitioning this feature

space into regions, where most of the points in a region correspond to a particular

category. The goal in training classifiers is to find an optimal partitioning of the input

space separating the highest number of disparate examples. An ideal classifier will

demonstrate strong predictive power, while explaining the relationships between the

variable to be predicted and the variables comprising the feature space.

Machine learning Applications to Proteomics Data

One property of a proteomics feature set that one must adhere to is the appropriate time

frame in which classifications are performed. In many cases the experimental results are

serially related, constraining the composition of useful training sets to expression

constructs having a priori prediction data. For example, one cannot expect to optimally

classify crystallization targets if the available training set contains experimental results

only up to the expression stage, because the available feature set will not contain a

response variable for crystallization. Conversely, it is entirely possible to classify proteins

based on some property corresponding to an earlier experimental stage - e.g., solubility

data has already been gathered for proteins having HSQC spectra, enabling one to train a

classifier to partition these proteins based on solubility information.

While there are many possible issues that data mining can address in relation to the

proteomics data collected by the Consortium, we have focused on protein solubility

prediction due to the importance of this property and the availability of a large set of
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Methanobacterium thermoautotrophicum expression construct records having solubility

measurements. The size of this data set provides the best opportunity for generalization

during training, increasing an algorithm's prediction success when presented with new

examples. An accurate prediction method for this property can also be an extremely

useful tool, as insolubility accounts for almost 60% of experimentally recalcitrant

proteins [26]. Here, we refer to solubility as “soluble in the cell extract”, a property that is

correlated with, but not necessarily identical to, the solubility of a purified protein.

In a supervised learning approach for solubility prediction, the training set consists of a

subset of input vectors extracted from the database, and is used by the classifier model to

partition the sample space based on solubility, the dependent variable to be predicted.

After training, the feature space will be partitioned into two regions: one containing

proteins labeled as soluble, and another with proteins labeled as insoluble. The second

part of this approach is to determine a trained classifier’s ability to generalize to unseen

examples, by presenting the model with a test set containing new feature vectors and

reevaluating its performance.

M. thermoautotrophicum Data Set

A data set comprising 562 proteins from theM. thermoautotrophicum genome was

compiled from the database and used for machine learning. Although SPINE currently

holds 740 construct entries for this organism, 178 of these do not have solubility

information and thus are not suitable for classification. As summarized in Table 2, a total

of 42 features were extracted from the corresponding protein sequences, such as amino

acid composition, hydrophobicity, occurrence of low-complexity regions, secondary

structure, etc. Combined with the database fields highlighted in Table 1, these features

comprise the input vector used for the classification study presented here.

To identify which proteins were used for this study, we constructed a "frozen" version of

the database at bioinfo.mbb.yale.edu/nesg/frozen. This contains the entries reported here

and will not change in the future. TheM. thermoautotrophicum protein expression
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constructs on which the analysis was performed are also highlighted in the frozen

database.

It should be noted that prediction results for a proteomics data set may exhibit some

degree of specificity to the expression vectors and experimental conditions of cell

growth, induction, etc. used for protein purification. A characteristic of this specific M.

thermoautotrophicum data is the uniform set of conditions that were used to prepare

protein samples [26]. Additionally, the experimental targets selected by the Consortium

consist largely of non-membrane proteins, so the available data set is biased in this

regard.

Decision Tree Analysis

The selection of an appropriate learning algorithm depends on several factors, such as the

type of data to be classified (numeric, symbolic), the number of available examples in the

data set, and how many of the examples are likely to be noisy or inaccurate.

Computational considerations such as processing time, memory limitations, and

feasibility of implementation are also influential. Another issue is the degree of desired

interpretability of the results, which is largely determined by the representation language

used by a given algorithm. One method may exhibit advantages in interpretation, but may

generalize less optimally than another (or vice versa). The most appropriate balance

between prediction success and interpretation depends on which quality is more

important for the application. We evaluated a number of different approaches for this

study, including neural networks, decision trees, support vector machines, Bayesian

networks, and linear discriminants. Here we focus on decision trees due to the relative

ease of interpretability afforded by the model.

Model Description

Decision tree learning [27,28] is a widely used and effective method that can partition

data that is not linearly separable (Figure 6). An individual object of unknown type may

be classified by traversing the tree. At each internal node, a test is performed on the
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object’s value for the feature expressed at that node (often called the splitting variable,

e.g. alanine composition). Based on this value, the appropriate branch is followed to the

next node. This procedure continues until a leaf node is reached and the object’s

classification is determined. In classifying a given object, a variable number of

evaluations may be performed or omitted, depending on the path taken when the tree is

traversed. In this manner, a heuristic search is performed to find a compact, consistent

solution that generalizes to unseen examples.

During training, the tree is grown in two stages: (1) splitting the nodes and (2) pruning

the tree. A common criterion for binary node splitting entails maximizing the decrease in

an impurity measure, such as residual mean deviance. The lower the deviance, the better

the tree explains the variability in the data. A binary split for a continuous feature

variable v is of the form v < threshold versus v > threshold; for a “descriptive” feature, a

binary split divides the feature’s value range into two classes. The size of the decision

tree necessary to classify a given set of examples varies according to the order in which

properties are tested, and growing a tree usually has the effect of overfitting the training

set. A common strategy in most pruning algorithms is to choose the smallest tree whose

error rate performance is closest to the minimal error rate of the larger, original tree, as

this is the model most likely to correctly classify unknown objects. Pruning is particularly

important with noisy data (where the distribution of observations from the classes

overlap) as growing the tree in this case will usually overfit the training set.

A number of advantages are evident in the decision tree model. Classification can be

based on an arbitrary mixture of symbolic and numeric variables, and (for axis-parallel

splitting) one is not required to scale the variables relative to each other. The model is

generally robust when presented with missing values. In addition, straightforward and

concise rules can be inferred from the tree by following the path from root to leaf nodes.

Feature selection

We used decision trees to partition the 562M. thermoautotrophicum proteins into soluble

and insoluble classes, based on a subset of the features listed in Table 2. The features that
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are relevant to a given problem domain are often unknown a priori, and removing those

which are redundant or irrelevant can produce a simpler model which generalizes better

to unseen examples. Automated feature selection attempts to find a minimal subset of the

available features, in order to either improve classification performance, or to simplify

the model’s structure while preserving prediction accuracy [29]. Typically, a search

algorithm is used to partition the available feature set. Classifiers are then trained on the

feature combinations presented by the search algorithm to identify those features which

have the greatest impact on learning. In our case, we used a genetic algorithm [30] to

search the space of possible feature combinations; the relevance of individual feature

subsets was estimated with several machine learning methods, including decision trees

and support vector machines [31]. We arrived at a feature subset consisting of the amino

acids E, I, T, and Y, combined compositions of basic (KR), acidic (DE), and aromatic

(FYW) residues, the acidic residues with their amides (DENQ), the presence of signal

sequences and hydrophobic regions, secondary structure features, and low-complexity

elements. These are highlighted in Table 2.

Decision Tree Results

The trees that were trained on this data set had a misclassification rate of 12%. Decision

trees built on the training set are always overly optimistic, and contain a large number of

nodes. Only the upper region of the tree is significant in terms of yielding a generalized

concept, and this is the segment from which useful rules can be derived. After training

and pruning of the decision trees, we extracted several classification rules for

distinguishing between soluble and insoluble proteins, as described in Figure 7. Two trees

are shown in this example. Figure 7A illustrates the upper 5 levels of a decision tree built

on the entire set of 562 proteins and subjected to cross-validation. The tree in Figure 7B

was trained on a 375-protein subset of the data and tested with the remaining 187.

Both of these exhibit simple rules for classifying soluble and insoluble proteins,

illustrated by the green and red paths on either side of the root node. In the case of Figure

7A, soluble proteins are selected by the right branching path of the tree, provided their

amino acid sequences have a combined aspartate and glutamate composition (represented
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as C(DE)) of at least 18%. This path further classifies soluble proteins based on the

length of their sequences, although the most discriminating variable is clearly the

presence of acidic residues. Following the left branching path of the tree, insoluble

proteins are selected based on the conditions that their sequences contain 1) fewer than

18% acidic residues (C(DE)), a long (at least 20-residue) stretch of amino acids with a

minimum hydrophobicity of less than –0.78 kcal/mol on the GES scale [32] (labeled

Hphobe), and a combined composition of the acidic amino acids and their polar amides

(C(DENQ)) under 16%.

The decision tree depicted in Figure 7B further isolates the two most discriminating

features: acidic residues composition and the presence of a hydrophobic stretch. Aside

from their metal ion binding abilities, aspartic and glutamic acid are negatively charged

due to their carboxyl side chains. These highly polar residues are often found on the

surface of globular proteins, where they can interact favorably with solvent molecules.

They in fact have the highest charge density per atom of all the amino acids, a property

obviously associated with solubility. The hydrophobic region identified is not long

enough to be considered a transmembrane helix, but clearly identifies an “adhesive” area

of the protein.

Decision tree learning produces a variety of tree topologies depending on the specific

data and features used for training. We divided the 562-protein data set into random

training and testing sets of 66% and 33% of the input vectors, respectively, and built

decision trees using all of the available features. A number of interesting patterns emerge

based on the utilization of classification features in various trees. Examining the decision

tree paths reveals intricate sorting based on amino acid composition in addition to the

most widely used features. For example, a rule was discovered which selects soluble

proteins having greater than 18% DE composition, fewer than 8% arginine and greater

than 3% lysine residues. Another tree exhibited similar prediction success by combining

arginine and lysine into a common splitting variable immediately following the 18% DE

rule, identifying soluble proteins having less than 14% KR composition. However,
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aspartic and glutamic acids were then isolated in lower levels of the tree, achieving a

finer partitioning by sorting on the individual acidic residues.

Cross-validation

Overfitting can occur when a model performs well on the training set, but fails to

generalize to unseen examples. In these instances, the algorithm has partitioned the data

too finely and has mapped a decision surface to the training data that too closely follows

intricacies in the feature space without extracting the underlying trends, essentially

“memorizing” the training set. In practice, we can say that if an alternate learning

solution exists with a higher error rate but generalizes better over all available input

vectors, overfitting has occurred. One way of studying (and hence subsequently

preventing) overfitting is cross-validation, which gives an estimate of the accuracy of a

classifier based on resampling.

Stratified 10-fold cross-validation was performed on the decision trees, where each

successive application of the learning procedure used a different 90% of the data set for

training, and the remaining 10% for testing. Each of these training sets produced different

trees from those constructed based on the entire data set. Using the testing sets for

validation with their corresponding tree models, we took the sum of the number of

incorrect classifications obtained from each one of the ten test subsets, and divided that

sum by the total number of instances that have been used for testing (i.e., the total

number of instances in the data set), thereby producing the estimated error for the entire

tree. This cross-validation approach resulted in an overall prediction success of 61-65%

over the various data subsets. This does not correspond directly to the decision tree

performance based on the entire data set, as cross-validation results are produced from

many different partitions of the training and testing sets.

While typically used for error estimation, cross-validation is not optimal for medium-

sized or "mesoscale" data sets, such as our proteomics set. This is because the procedure

excludes a large fraction of the data during training, resulting in insufficiently sized

testing sets. Consequently, other non-cross-validated estimates of classification error
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have been developed. In the next section we apply one such method, called pessimistic

error estimation [27].

Rule Assessment

Regardless of the specific method of error estimation used, some paths, i.e. sequences of

rules, within the decision tree may perform significantly better than others. These rules

provide a straightforward way for others to apply the classification results in a practical

context. Moreover, a few simple rules extracted from the tree may be considerably more

robust to changes in the underlying data than the original tree topology. Consequently,

we describe in this section a way to measure the quality of a particular rule - in constrast

to the overall estimate of a tree's performance reported above.

For this rule assessment, we do not perform cross-validation at all due to the scarcity of

the data underlying any particular rule. Instead, we use Quinlan's pessimistic estimation

method, calculating a rule’s accuracy over the training examples to which it applies and

then calculating the standard deviation in this estimated accuracy assuming a binomial

distribution. More specifically, given the set C of training cases at node Q, its majority

class, and the number of cases outside that class, error-based pruning interprets C as a

binomially distributed sample with well-defined confidence limits, and estimates Q's

error rate as the upper limit on its posterior probability distribution. Equivalently, for a

given confidence level, the lower bound estimate is then taken as the measure of the rule

performance.

The default accuracy of choosing a soluble protein in our data set is defined by S/T,

where S is the number of soluble proteins and T is the total number of proteins. The

accuracy of the rule that predicts solubility is s/t, where s is the number of proteins

reaching the leaf node at the end of a decision path, and t is the total number of proteins

reaching that node. It is straightforward to evaluate the probability that a randomly

chosen rule will do as well as or better than a decision rule with accuracy s/t. This

probability is given by:
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Note that the sum is over the hypergeometric distribution. Small values of this measure

correspond to good rules because this means there is a small probability that a rule has

arisen by chance.

For example, the branching of the tree at the root, based on the condition that the overall

composition of aspartate and glutamate in protein sequences is greater than 18%, defines

a rule which classifies many proteins as soluble. This rule has an observed accuracy of

108/136 (0.79) over the training set, and a probability of 6 x 10-9 of arising by chance.

We must take into account the fact that the observed accuracy is overly optimistic, and

correct it by subtracting 1.96 times the binomial standard deviation (for the lower bound

of a 95% confidence interval). For t > 30, the binomial distribution can be approximated

by the normal distribution.

The probability that a random variable X, with mean 0, lies within a certain confidence

range of width 2z is P(-z < X < z) = c. For a normal distribution, the value of the

confidence c and the corresponding values of z are given in standard tables. In our case

we want to standardize s/t. To do this, we first assert that the observed success rate s/t is

generated from a Bernoulli process with success rate b. If t trials are taken, the expected

success of the random variable s/t is the mean of a Bernoulli process b and the standard

deviation:

( )
t

bb −1

The variable s/t can be standardized by subtracting it from the mean b and dividing by the

standard deviation. The standardized random variable X is defined as:
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Assuming that t is large enough, the distribution of X approaches the normal distribution.

As mentioned above, the probability that the random variable X with mean 0 lies within a

certain confidence range of width 2z is P(-z < X < z) = c, or explicitly:
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Choosing a confidence probability c corresponds to a particular value of z (note that

standard Z values are given for the one tailed P(X < z). For example, P(X < z) = 5%

corresponds to P(-z < X < z) = 90%). Solving for the value of b will give us the range of

the success rate, and we will choose the lower bound to find the pessimistic error rate

(success rate + error rate = 1; taking the largest error that corresponds to the smallest

success rate will yield the pessimistic error rate).

Inspecting the argument of the above equation, we can solve for b at the boundaries +z

and -z, i.e.,
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Then we can express the confidence range as:
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and take the lower limit. Taking the pessimistic lower bound estimate for a 95%

confidence interval gives an overall 0.71 success ratio, in contrast with the default rule at

the root of the tree, which has a success rate of 330/562 (0.59). The probability of this

rule occurring by chance is less than 0.1%.

A statistically valid approach to estimate the true error (et) of a hypothesis within a 95%

confidence interval is given in terms of a sample error (es) and the sample size n (n > 30):

n

ee
ee ss
st

)1( −
±=

In addition to cross-validation and error estimation, model combination techniques were

applied using decision trees derived from random subsets of the available data. These

methods included bagging (bootstrap aggregating) and boosting [33], where each new

model is influenced by the performance of those built previously and is trained to classify

instances handled incorrectly by earlier ones. No significant improvement in prediction

rates was found with any of these approaches. Similarly, the approach of stacking several

different classifiers, such as a decision tree with a support vector machine, to another

higher-level meta-learner (e.g., another decision tree classifier) also did not change the

prediction accuracy.

Identification of potential crystallization targets

We also performed machine-learning analyses on other aspects of the proteomics data

set, such as the potential for crystallization. An example decision tree built to classify 64

proteins based on their tendency to crystallize is shown in Figure 6. From this result, it

appears that the top-level rule in the tree, aspartate composition of greater or less than

4.5% is a discriminating feature. Significantly less data is available for this classification
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task than for solubility prediction; hence these preliminary results are not statistically

robust. When more data becomes available, we should be able to derive rules relating

other protein attributes using the decision tree approach.

Discussion

Comprehensive data management practices coupled with computational analysis can be a

powerful tool for large-scale proteomics. An interactive, dynamically modifiable

database is an important component in collaborative research, enabling global protein

target prioritization and synchronization of efforts across many laboratories. If data

resources are designed for subsequent analysis, data mining strategies can be an effective

way to make sense of experimental data and discover hidden trends. Implementing

robust, standardized archival procedures to maintain data from disparate sources is

critical to the success of large-scale projects where many laboratories may be

collaborating. In turn, the effective application of retrospective (post-experimental)

analysis methods is dependent upon the availability of comprehensive data sets having

standard formats easily parsed by computer programs.

By its nature, large-scale genomics and proteomics research cannot be performed by a

conventional single-investigator laboratory. It will be carried out in large central facilities

or via consortium of many laboratories. Our approach is designed to facilitate the latter

research model. This approach enables not only the integration of data from various

sources, but also the formulation of statistical predictions of various macromolecular

properties, which can potentially enhance the efficiency of laboratory research.

In particular, decision tree models feature a number of practical advantages, such as the

straightforward interpretation of results, ability to mix numeric and symbolic features,

and invariance to numeric scaling. The ability to devise prediction rules from the paths

through the tree is perhaps the most powerful feature of this approach. Eventually, we

plan to do a comparative study of several machine learning algorithms, to assess the
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capabilities of various methods for predicting macromolecular properties of new proteins

based on the training sets produced by the database.

Database Extensions: Sparse Data Records and Multiple Expression Constructs

The prototype database system is currently implemented as a multi-table relational

model. The limited scalability of this design may become problematic as the system

expands to capture more diverse experimental data, resulting in a larger number of

unused fields. To circumvent this "sparse matrix" problem, future versions of the system

are moving toward the entity attribute value (EAV) representation [34]. This design

would allow various sets of database fields to be accessed and updated, depending on the

type of experiments typically performed by different investigators. Efforts are ongoing to

standardize and incorporate more experimental data into this format, so that

computational methods can be applied to a wider range of features.

A related issue concerns the way multiple expression constructs having a shared protein

target should be considered for analysis. In order to predict various properties of proteins,

it may be necessary in some cases to collapse the data from related expression constructs

to the target protein level. Although this problem was not encountered with the data sets

used for the studies presented here, it remains to be seen which approaches are most

suitable for handling instances with this type of complexity.

In the future, the results of data mining analysis may be incorporated directly into the

database web site, instead of being computed offline. This more explicit integration could

allow investigators to perform computational predictions on target proteins as they are

entered into the system.

Future Directions: Global Surveys

SPINE currently focuses on the front end of large-scale proteomics efforts, collecting the

experimental data generated before structures have been determined. As the NESGC

project matures, we anticipate that the database will incorporate more and more

information about completed protein structures. The analytical theme will then shift from
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optimization of high-throughput structure determination to presenting a global survey or

protein folds in various genomes, similar in spirit to a number of previous studies

[35,36,37,38].
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Figure legends

Figure 1. Global project summary (A), statistics display (B), and database home page (C).

The summary table can be dynamically reconfigured to present subsets of database

entries, selected based on a number of simple parameters such as the target genome the

protein originates from, or the institution submitting the entries. An additional parameter,

labeled “Attribute”, is used to narrow the search to entries whose experimental progress

corresponds to a particular chronological stage in the table. For example, entries can be

selected with an attribute of “secondary structure”, which will retrieve all constructs

having secondary structure data derived through various biophysical characterization

methods.



31

Figure 2. A) Relationships between database system components; B) Software module

dependencies. The system was developed using the mySQL database engine for the

Linux platform, in conjunction with two programming languages to facilitate low-level

database interaction and development of the user interface software: Perl 5.005 with the

Perl Database Interface (DBI) module, and the PHP 3.0 hypertext preprocessor. While

syntactically similar, each language features distinct capabilities. Because the PHP

interpreter is integrated as an Apache web server module, execution of PHP programs is

generally faster than that of Perl-based CGI programs. This makes PHP well-suited to

interactive systems where timely server responses are a priority. While syntactically

straightforward, the PHP language does not offer the extensive programming flexibility

of Perl5. The core of the user interface system was therefore developed in PHP, while

auxiliary components requiring more sophisticated functionality were implemented in

Perl.
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Figure 3. Core schema for the expanded database. Relational tables capture data for target

proteins, their related expression constructs, and separate sets of experimental parameters

for expression, purification, X-ray crystallography, NMR, and biophysical

characterization. Additionally, a number of features have been developed to record lab

management and transaction information (tables not shown).
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Figure 4. Overwrite protection during the creation of new database records. The first step

in creating a database record is assigning an identifier to the new entry. The identifier

consists of three parts: a character to represent the target organism, a second character to

indicate the institution from which the entry originates, and a unique alphanumerical

character string. When the entry identifier is selected, the character string component may

be chosen by the investigator if a proprietary nomenclature scheme is preferred;

otherwise it can be automatically assigned by the system. In the latter case, the unique

identifier is the next available integer following the combination of target organism and

institution codes. Whether the character string component is selected by the user or

generated by the system, new construct identifiers are examined by the software and

guaranteed not to conflict with those of existing entries, protecting against the accidental

overwriting of data. Once a valid identifier has been assigned to the new database record,

the user may input relevant experimental parameter values using the construct entry form.

Database records may be recalled and updated in two ways: by pressing the edit button

available on its associated display page, or by entering an expression construct identifier

directly into a form accessible from the main database web interface. Once a record has

been selected, all of its existing field values are displayed in the construct editor, which

shares a layout similar to the entry form. Users are then able to enter additional data

and/or edit the current values associated with the construct, and store the updated record

in the database.
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Figure 5. Database searching and record retrieval. Users can construct complex Boolean

searches on a number of database key fields with an intuitive form (A); the form elements

are then parsed internally and an SQL query is created based on the values of the form

elements and executed against the database. The search results are then summarized in a

table, displaying a user-selectable number of entries per page (B). The query terms also

appear above the table in a pseudo-English format, to assist in performing effective

searches. Selecting an entry from the table displays the expression construct record in a

separate web page (C), which contains all the database fields associated with the record,

in addition to a number of links to external resources (D).
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Figure 6. Conceptual structure of the decision tree model used for classification

problems. Instances are sorted from root to leaf nodes, based on a number of properties

defined at each node by splitting variables. Pictured is a decision tree built to predict the

tendency for protein crystallization based on sequence features such as amino acid

content, hydrophobicity, and homology to other sequences. The nodes of the tree are

represented by ellipses; the values to the left of each node indicate the number of proteins

which are unable to crystallize, while those to the right denote the crystallized examples.

The splitting threshold for each node appears directly under its associated variable. The

decision tree algorithm calculates all possible splitting thresholds for each variable,

selecting each variable and its threshold to optimize the homogeneity of the two

subsequent nodes. When a variable v is split, the right branch is assigned to v < threshold,

and the left branch corresponds to v > threshold.
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Figure 7. Decision trees built for solubility prediction. Tree pruning methods are designed

to reduce the number of nodes, and arrive at the smallest tree whose error rate

performance is closest to the minimal error rate of the entire tree. A, B) Uppermost levels

of two decision trees, highlighting paths for classification rules. The original trees from

which these subsets of nodes were derived are inset to the right. Decision tree A was built

using the entire set of 562 proteins, while B was trained and tested on discrete

randomized subsets of the proteomics data: 375 proteins were used for training and the

remaining 187 for testing. Soluble and insoluble proteins are indicated by the numbers to

the right and left of each node, respectively. In the case of decision tree B, two values are

used for each class, corresponding to training (left) and testing (right) phases. Decision

pathways which terminate in highly homogeneous nodes (mostly dark = soluble, mostly

white = insoluble) and are not distant from the root define more robust rules which can

generalize against unseen examples. Heterogeneous nodes could be further split by

extending the tree downward, improving the error rate but overfitting the training set. The

pathways indicated in each decision tree represent sets of rules. For instance, the right

branching path of example A (indicated in green) selects mostly soluble proteins, based

on the condition that the combined compositions of acidic residues (C(DE)) in their

sequences exceed 18%. The left branching path of the same tree (in red) outlines the

following set of conditions, and classifies proteins which are likely to be insoluble:

C(DE) less than 18%; presence of a stretch of amino acids with average hydrophobicity

less than -0.78 kcal/mole (labeled Hphobe); fewer than 16% acidic amino acids and their

amides (C(DENQ)). C) Thresholds at which each node partitions the input vectors in the

upper levels of the two decision trees. At each level, the nodes are listed sequentially

from left to right (e.g., at level 2 in tree A, the leftmost node represents the splitting

variable Hphobe having a threshold of -.78 on the GES hydrophobicity scale, followed by

a node in the rightmost branch of the tree corresponding to the splitting variable Length

with a threshold of 95 amino acids).
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Table legends

Table 1. Listing of prototype database fields and their utility in data mining analysis. The

level of standardization of experimental parameters is indicated by the shading of each

database attribute, followed by example values and a description of each field. Darkly

shaded fields were the focus of classifier training and predictions.
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Table 2. Protein sequence features used for solubility prediction. Amino acid

compositions and biochemical properties formed the basis of the feature set, secondary

structure prediction, hydrophobicity scores on the GES scale [32], and entropic

complexity measures calculated by the SEG program [39]. Long low-complexity regions

were identified with SEG using the standard parameters, a trigger complexity K(1) of 3.4,

an extension complexity K(2) of 3.75, and a sequence window of length 45. These

domain sized compositionally-biased elements are often associated with non-globular

parts of proteins that do not readily fold and may aggregate in solution. Short low-

complexity regions were identified using a trigger complexity of K(1) = 3.0, an extension

complexity K(2) = 3.3, an a window of length 25. In order to enhance predictability and

model simplicity, feature selection algorithms were implemented to extract a feature

subset, highlighted in braces. The experimentally determined solubility values were used

in the training phase of supervised learning. Secondary structure prediction was carried

out with the GOR program [40]. Signal sequences are identified via pattern matching,

and contain a charged residue within first seven amino acids, followed by a stretch of 14

hydrophobic peptides (measured on the GES hydrophobicity scale).


