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ABSTRACT

Highly expressed genes in many bacteria and small
eukaryotes often have a strong compositional bias,
in terms of codon usage. Two widely used numerical
indices, the codon adaptation index (CAI) and the
codon usage, use this bias to predict the expression
level of genes. When these indices were ®rst intro-
duced, they were based on fairly simple assumptions
about which genes are most highly expressed: the
CAI was originally based on the codon composition
of a set of only 24 highly expressed genes, and the
codon usage on assumptions about which functional
classes of genes are highly expressed in fast-grow-
ing bacteria. Given the recent advent of genome-
wide expression data, we should be able to improve
on these assumptions. Here, we measure, in yeast,
the degree to which consideration of the current gen-
ome-wide expression data sets improves the per-
formance of both numerical indices. Indeed, we ®nd
that by changing the parameterization of each model
its correlation with actual expression levels can be
somewhat improved, although both indices are fairly
insensitive to the exact way they are parameterized.
This insensitivity indicates a consistent codon bias
amongst highly expressed genes. We also attempt
direct linear regression of codon composition
against genome-wide expression levels (and protein
abundance data). This has some similarity with the
CAI formalism and yields an alternative model for the
prediction of expression levels based on the coding
sequences of genes. More information is available at
http://bioinfo.mbb.yale.edu/expression/codons.

INTRODUCTION

It is well known that highly expressed genes exhibit a strong
bias for particular codons in many bacteria and small

eukaryotes. One suggested explanation is the observation
that there appears to be a relationship between tRNA
abundance and codon bias (1±3). Several reviews on this
topic have been published previously (4,5).

In 1987, the `codon adaptation index' (CAI) was proposed
as a quantitative way of predicting the expression level of a
gene based on its codon sequence (1). More recently, the
`codon usage' was introduced as an alternative quantitative
indicator (3). It also uses the occurrence of codons in a gene
sequence to predict whether genes are likely to be highly
expressed, although the formalism is quite different from the
one used for the CAI. A related method, the codon bias
formalism, is based on similar principles (6).

Expression level indicators such as these are widely used
and are important in a variety of contexts. First, there is the
annotation of genome sequences. The expression level
indicators can serve as one of the variables to determine
how likely the transcription and translation of an open reading
frame (ORF) into a protein product is. Secondly, in
heterologous gene expression, the codon-based expression
indicators are helpful for ®nding the codon sequences that are
most likely to yield high expression. The codon-based
expression indicators and related methods are also often
used as convenient `rules of thumb' in other applications.

Given that the codon-based expression models have these
important applications, it is perhaps surprising that they are
still based on rather qualitative assumptions about gene
expression. For instance, the parameters underlying the CAI
model rely on the codon composition of only a limited set of
highly expressed genes; to de®ne the parameters in the CAI
model (see below), Sharp and Li counted the codon frequency
in only 24 highly expressed genes (1). About half of these
genes are ribosomal; the remaining ones are mostly metabolic
enzymes.

In the codon usage model, the parameters are based on a
somewhat broader set of highly expressed genes. The codon
usage model has mainly been applied to fast growing bacteria,
for which, as Karlin et al. have shown, it is a reasonable
assumption that ribosomal genes, chaperones, and translation
processing factors are highly expressed (7,8).
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In summary, the codon-based expression models are based
on qualitative estimates of the expression levels of limited
gene sets. But since these models were ®rst proposed, several
quantitative expression data sets, covering the majority of
genes in a genome, have become available. This raises the
natural question whether we could improve the parameters of
the codon-based expression indicators by considering larger
sets of genes with more accurate expression data. We present
the results of such a procedure here, using the expression
information available for the organism yeast.

In the following sections we brie¯y recap the CAI and
codon usage formalisms. Later, we show how to calculate new
parameters for these models. We also propose an alternative
linear model to predict the expression levels from the codon
composition of genes.

The CAI model

The CAI model assigns a parameter, termed `relative
adaptiveness' by Sharp and Li, to each of the 61 codons
(stop codons excluded) (1). The relative adaptiveness of a
codon is de®ned as its frequency relative to the most often
used synonymous codon; note that this parameter is computed
from a set of highly expressed genes G (we leave aside the
question of how to de®ne this set of genes for now). It is
given by:

waa;i�G� � faa;i�G�
faa;max�G� 1

where faa,i is the frequency of codon i (which encodes amino
acid aa), and faa,max the frequency of the codon most often
used for encoding amino acid aa in a set of highly expressed
genes G. The relative adaptiveness parameter waa,i ranges
from 0 to 1, with 0 indicating that a codon is not present at all
in G, and 1, a codon that occurs most often in G for a given
amino acid.

The CAI of a gene g is then simply the geometric average of
the relative adaptiveness of all codons in a gene sequence:

CAIg �
YN
i�1

w
1=N
i 2

Here, wi is the relative adaptiveness of the ith codon in a gene
with N codons. This formula can be transformed into:

CAIg �
Y61

k�1

w
Xk;g

k 3

where wk now represents the relative adaptiveness of the kth
out of the 61 codons in the genetic code (excluding stop
codons); Xk,g is the fraction of codon k among the total number
of codons in gene g:

Xk;g � Ck;gP61

i�1

Ci;g

4

where Ck,g is the number of times codon k appears in gene g.
Note that wk = wk(G) in equation 3 is dependent on the set of
highly expressed genes G.

Like the relative adaptiveness, the CAI also ranges from 0
to 1. Higher CAI values indicate genes that are more likely to
be highly expressed.

The codon usage model

Karlin et al. de®ne the `codon bias' of a gene g relative to a
gene set G as (4):

B�g j G� �
X

aa

paa�g�
X

�x;y;z��aa

j f �x; y; z� ÿ g�x; y; z� j
0@ 1A 5

where paa(f) is the fraction of amino acid aa in gene g; f(x, y, z)
the frequency of a codon triplet (x, y, z) in gene g normalized
such that f(x, y, z) = 1 if (x, y, z) is the most common
synonymous codon; g(x, y, z) is the corresponding normalized
codon frequency in gene set G. Equation 5 is written in the
notation of Karlin et al. We can rewrite equation 5 in our own
notation as follows:

B�g j G� �
X

k

j Xk;g ÿ Xk;G j 6

where Xk,g and Xk,G are de®ned as in equation 4. Note that k
has replaced (x, y, z) as the summation index. Given these
de®nitions, Karlin et al. de®ne an expression level measure
E(g) as follows (8):

E�g� � B�g j C�
1
2

B�g j RP� � 1
4

B�g j Ch� � 1
4

B�g j Tf � 7

where the gene set C comprises all genes in the genome, RP
the ribosomal proteins, Ch chaperones, and Tf translation
processing factors. E(g) is close to zero if gene g has a codon
composition close to the average composition of the genome
[E(g) ® 0 because B(g|C) ® 0], while E(g) would take on
very large values if the codon composition of gene g is close to
the composition of ribosomal genes, chaperones and transla-
tion processing factors [E(g) >> 1 because B(g|RP), B(g|Ch),
B(g|Tf) ® 0]. The idea is that highly expressed genes tend to
have higher values of E than lowly expressed genes.

Karlin et al. have shown that highly expressed genes can
best be differentiated from lowly expressed genes in the
multidimensional space of the different codon bias terms
B(g|RP), B(g|Ch) and B(g|Tf) (8). However, in this study, we
use the simpli®ed expression measure E(g|G), de®ned as:

E�g j G� � B�g j C�
B�g j G� 8

where G is a set of highly expressed genes. Thus, E is
dependent on the set G that can be chosen in different ways. In
other words, the parameters of the model are the 61 codon
fractions Xk,G in the gene set G (see equation 6).

Given this formal description of the CAI and the codon
usage, the question is how we can use the genome-wide
expression data to optimize the 61 parameters in the two
models with respect to the prediction of expression levels.
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MATERIALS AND METHODS

Expression data

We give an overview of the expression data we used in this
study in Supplementary Material, Table S1. Brie¯y, we have
combined different publicly available Affymetrix gene chip
and SAGE data sets into one reference mRNA expression data
set, and two publicly available 2D-gel electrophoresis data
sets into one reference protein abundance data set (9±14). We
have described this procedure, which helps to remove noise
and errors from the data, previously (15). The codon
composition of genes fundamentally affects the mechanism
of protein translation; thus, the protein abundance data might
contain more useful information than the mRNA expression
data. On the other hand, the protein abundance data are
available only for a very limited subset of 150 genes while
there is a substantially larger amount of mRNA expression
data (6071 genes). [For our calculations, we only considered
those genes in the reference mRNA expression set that have an
expression level of more than 0.5 copies/cellÐthis is the case
for 4270 genes. Smaller expression levels are too close to the
resolution limits of the gene chips and therefore too noisy (see
also captions of Tables 1 and 2)].

As described previously (15), we term the combination of a
gene set (with GProt referring to the protein abundance and
GmRNA to the mRNA expression reference set) and an
expression level or weight (aProt for protein and amRNA for
mRNA abundance) `weighted population'. Thus, three
different weighted populations can be formed from our
reference data sets: [GProt, aProt], [GProt, amRNA], and
[GmRNA, amRNA]. ([GmRNA, aProt] is not meaningful since
aProt is not de®ned on all genes in GmRNA.) In the following
we use all three populations for the parameterization of the
CAI and the codon usage models.

Parameterization of the CAI and codon usage models
with whole-genome expression data

Figure 1 schematically shows the procedure we used to
parameterize the CAI and codon usage models with the
expression data. We start by selecting one of the three
populations mentioned above as an evaluation set. The
evaluation set is later used to evaluate how well the CAI or
codon usage model predicts actual expression levels. We also
need to de®ne a parameterization set. The parameterization set
is the set of highly expressed genes G (see Introduction); it is
used to calculate the parameters wk(G) for the CAI (see
equation 3) and the parameters Xk,G for the codon usage (see
equation 6). To de®ne the parameterization set, we choose one
of the three populations and an expression level threshold T.
We only include those genes of the population in the
parameterization set whose expression level exceeds this
threshold. With the parameters in hand, we are able to
compute CAI and codon usage values for all genes in the
evaluation set. We evaluate how well the CAI and codon
usage models predict expression levels with two ®gures of
merit: the Pearson correlation and the Spearman rank correl-
ation. {Given a set of abundance levels a in the evaluation set,
and a vector of CAI or codon usage values (C), we calculate
the Pearson correlation as corr[log(a),log(C)] and the rank
correlation as corr[rank(a),rank(C)]}.

We use the rank correlation as an additional diagnostic to
the (linear) Pearson correlation because the relationship
between CAI or codon usage values and expression levels is
of a non-linear nature (see Supplementary Material).

We can iterate the procedure by changing the expression
level threshold T and repeating the subsequent steps until we
arrive at an optimal ®gure of merit. This gives us optimal
parameters for the CAI and codon usage models.

Example of the CAI parameterization

Figure 2 shows a speci®c example of the parameterization of
the CAI with [GProt, aProt] as both the parameterization and
evaluation population and illustrates how the ®gure of merit
(Pearson correlation of the CAI values and the evaluation set)
changes as a function of the expression level threshold T.
When the threshold reaches T = 66 200 protein copies/cell the
Pearson correlation reaches a maximum. At this point, there
are only 21 genes in the parameterization set. The maximum
correlation is slightly greater than the correlation between the
CAI based on the original parameters by Sharp and Li (1) and
the same evaluation set.

Figure 1. Our general procedure for the parameterization of the CAI and
codon usage models. We ®rst choose an expression data set and an arbitrary
expression level threshold T to differentiate highly from lowly expressed
genes. The highly expressed genes with expression levels greater than T
de®ne the parameterization set. Based on this we calculate new model
parameters. Finally, to evaluate the performance of the models, we choose
another expression data set (we term this the evaluation set): we calculate
the CAI and codon usage values for all genes in the evaluation set and then
measure the correlation between the model values and the actual expression
levels as a ®gure of merit.
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Linear model

In addition to the determination of the parameters for the CAI
and codon usage models it is also possible to relate expression
levels and codon composition of genes more directly.

The CAI formalism itself, slightly modi®ed, suggests a
multivariate linear model for doing this. Starting with equation
3, we can take the logarithm on both sides to obtain:

log�CAIg� �
X61

k�1

Xk;g log�wk� 9

If we introduce vk º log(wk) and consider that the log(CAI) is
related to the logarithm of the gene expression levels, we can
suggest the following linear model to predict the expression
level ag of a gene g:

yg � v0 �
X61

k�1

Xk;gvk 10

with the residuals

�g � yg ÿ log�ag� 11

In equation 10, yg is the predicted expression level, the codon
fractions Xk,g are the predictor variables and v0, ¼, v61 the
parameters. Note that we have introduced an intercept

parameter v0 in equation 10, for which there is no equivalent
in equation 9. We can then perform a standard multivariate
linear regression to estimate the model parameters v0, ¼, v61

by minimizing the deviance:

d �
X

g

�2
g 12

Reducing the number of parameters in the linear model. One
problem of this regression approach is obviously the large
number of parameters. This may result in over®tting, even
when the regression is applied to the largest population
[GmRNA, amRNA], which contains 4270 data points.

We avoided this problem by deriving a linear model that
consists of fewer parameters. This is done via a forward
selection of parameters, adding one predictor variable at a
time (16). A similar procedure has previously been used in
®nding signi®cant promoter sequence motifs (17).

We start with a model of just one predictor variable (codon
fraction Xk):

yk;g � v0 � vkXk;g 13

which gives the residuals:

�k;g � yk;g ÿ log�amRNA;g� 14

and the deviance:

Figure 2. An example of the parameterization of the CAI with expression data. Here, we use [GProt, aProt] for both the parameterization and the evaluation
steps. The Pearson correlation of the CAI with the evaluation set (left ordinate) is shown as a function of the expression level threshold T, which de®nes the
parameterization set of highly expressed genes. The right ordinate shows the number of genes in the parameterization set for a given threshold T. At
T = 66 200 proteins/cell, the Pearson correlation reaches a maximum. This correlation is slightly higher than the correlation of the original CAI model with
the evaluation set (dashed line).
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dk �
X4270

g�1

�2
k;g 15

Note that the deviance is dependent on the codon k. This
allows us to ®nd the codon that produces the smallest error and
thus select the ®rst predictor variable. We add this codon to a
`model set' M.

Then we iterate this procedure. Given a model set M of
codons with optimal parameter estimates, the linear model is:

yM;g � v0 �
X
m2M

vmXm;g 16

This model gives the new residuals:

�M;g � log�amRNA;g� ÿ yM;g 17

We then choose the next predictor variable by ®nding the
codon k that minimizes:

min
k 62M

dk �
X4270

g�1

��M;g ÿ vkXk�
 !

18

This codon is then added to model set M, and we iterate the
procedure described in equations 16±18. Note that the
interpretation of equation 18 is that the optimal predictor
variable is orthogonal to the linear model of equation 16.

Signi®cance of predictor variables. Each time we add a new
predictor variable to the model, we need to check whether the
corresponding parameter is signi®cant. We can do this by
observing the t statistic for a parameter estimate vk. The ratio
of a parameter estimate to its standard deviation follows a
t-distribution and a P-value based on this distribution can be
used for testing the hypothesis that vk = 0. The t statistic and its
corresponding P-values can be gathered from the standard
output of a linear regression when performed in various
statistical software packages (here, we used the publicly
available R statistical computing environment, http://www.
r-project.org/, as well as MATLAB for these computations).

To accept a predictor variable as signi®cant we required that
the P-value of the t statistic stay below a = 0.05. Since we

were choosing from several possible predictor variables at
each step, a Bonferroni correction is necessary for this
statistical test. This is equivalent to multiplying the P-value
for a parameter with the number of remaining possible
predictor variables. Given that there are already NM

parameters in the model set M, we have a choice of 61 ± NM

remaining predictor variables, and the condition for
signi®cance thus becomes:

P¢ = (61 ± NM)P < a 19

RESULTS

Parameterization of the CAI and codon usage models

Table 1 shows the performance of the CAI and the codon
usage with the original parameters in terms of the Pearson and
rank correlation with the expression data. Here, the CAI
parameters were taken from the original publication by Sharp
and Li (1), which stem from 24 highly expressed genes. The
situation is a little bit more complicated for the codon usage, in
that previously the codon usage had not been explicitly used
for the prediction of expression levels in yeast, but only in
prokaryotes. However, to come up with a set of `original'
parameters, we computed them from the set of 128 ribosomal
genes, following the recommendation of Karlin et al. who
showed that, in yeast, ribosomal proteins exhibit the largest
codon bias amongst all gene classes (4).

Table 2 generalizes the example shown in Figure 1 by
listing all possible evaluation and parameterization popula-
tions for both the CAI and the codon usage. Note that the
parameters of the CAI and the codon usage are in each case
dependent on the parameterization population and the expres-
sion level threshold T. (The threshold T de®nes the number of
ORFs with expression levels greater than T.) The table shows
the maximum Pearson and rank correlations that can be
achieved by varying T, the increase of the correlation
compared with the original models (`D correlation'), and the
size of the parameterization set at the maximum (rank)
correlation, measured in number of ORFs.

A mixed picture emerges from this comprehensive collec-
tion of statistics. In many cases the new parameters improve
the performance of the CAI and the codon usage (gray and
black shaded squares in Table 2), but sometimes the
performance is also slightly lower.

Table 1. The Pearson and rank correlation of the original CAI and codon usage models with various
evaluation sets of expression data

The last column of the table shows how many genes were used to calculate the original parameters
(given in number of ORFs).
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The codon usage models with the new parameters generally
perform better than the model with the original parameters (D
correlation is >1% six out of nine times for both the Pearson
and rank correlations), whereas the improvements for the CAI
are less obvious (D correlation >1% three out of nine times for
both the Pearson and rank correlations).

One important observation is that the parameterization sets
for which we found optimal parameters are usually very small
(on the order of 100 genes or less) for both the CAI and the
codon usage. This is despite the fact that we used whole-
genome expression data in our calculations. An extreme
example is the codon usage with parameterization population
[GProt, aProt] and evaluation population [GProt, amRNA]: here,
the optimal parameterization set contains only one gene (the
phosphopyruvate hydratase ENO2). This alone yields a rank
correlation of 0.66 with the expression data.

Linear model

We ®tted the linear model of equation 16 to the population
[GmRNA, amRNA] according to the iterative procedure
described in the Materials and Methods. We tested models
ranging from one to 61 codons (= predictor variables). The
largest model for which all parameters were signi®cant was a
model with 20 codons. (The results for each model are shown
in the Supplementary Material.) The values of these 20 codon

parameters are shown in Figure 3. We have only used [GmRNA,
amRNA] as the parameterization set because the other possible
populations are too small (150 genes) relative to the possible
number of parameters. When we used the reduced parameter
procedure with [GProt, aProt] or [GProt, amRNA] as the
parameterization populations, we found that linear models
with only two predictor variables are already superseding the
critical P-value of 5% (see Materials and Methods), thus
making them of little use for predicting expression levels.

The 20 codons that are signi®cant predictor variables in the
linear model for [GmRNA, amRNA] represent 13 different amino
acids (see Fig. 3 ). Of the seven remaining amino acids, ®ve
are under-represented in highly expressed genes (Asp, His, Ile,
Met and Tyr) while two of them are roughly equally
represented in highly and lowly expressed proteins (15,18).
Four of the 20 chosen predictor variables (= codon com-
positions) are negatively correlated with expression levels.
The parameters of the linear model and corresponding codons
(= predictor variables) are discussed in more detail in the
next section. Details of the regression results (parameters,
P-values, etc.) can be found in the Supplementary Material.

The bottom of Table 2 shows the performance of the linear
model compared with the CAI and codon usage. There is no
possible comparison to a set of original parameters, as in the
case of the CAI and the codon usage. Instead, we compared

Table 2. The Pearson and rank correlations of the CAI and codon usage models based on the new parameters

Altogether, there are nine possible combinations of parameterization and evaluation sets (second and third column) for both models. The fourth column shows
the Pearson correlation for the best set of parameters that could be found with our procedure. The ®fth column compares this value with the correlation
achieved by the original models. The seventh column shows how many genes were present in the parameterization set that yielded that maximum correlation.
The remaining columns give the same statistics for the rank correlation. The bottom of the table shows similar statistics for the linear model.
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the performance of the linear model with the performance of
the original CAI and codon usage models on the same
evaluation sets. The left half of the `D correlation' column in
Table 2 refers to the difference with the CAI correlation,
whereas the right half gives the difference with the codon
usage correlation. (There are three possible choices for the
evaluation set.) It is clear from the results that the best
performance is obtained when the parameterization and
evaluation populations are both [GmRNA, amRNA]. (This
should be expected, given that the model parameters were
optimized on this set.)

When [GmRNA, amRNA] is both the parameterization and
evaluation population, the Pearson correlation of the linear
model with the expression data is 0.75. This is slightly higher
than the best Pearson correlations for the CAI and codon usage
models. (The CAI has a maximum Pearson correlation of 0.72,
while the codon usage has a maximum Pearson correlation of
0.71.) In terms of the rank correlation, the best codon usage
model is somewhat better than the linear model (0.60 versus
0.56), while the CAI performs worse than both of the other
methods (0.46).

Preferential codons in yeast

As mentioned at the beginning, it is important for heterologous
gene expression to encode proteins with sequences that yield
optimal expression. A good rule of thumb for ®nding such an
optimal sequence is to choose codons that are most frequent in
highly expressed genes. The CAI model provides an explicit
way of ®nding such codons; the most frequent codons simply

have the highest relative adaptiveness values, and sequences
with higher CAIs are preferred over those with lower CAIs.
The codon usage formalism does not explicitly use relative
adaptiveness values, but they can be easily calculated with
equation 1 from the parameterization sets that yield optimal
codon usage parameters. A third possibility is to look at
the parameters of the linear regression with respect to
which codons are more preferred. (This is of course only
possible for those codons that are predictor variables in the
linear model.)

Figure 3 shows the relative adaptiveness values for the CAI
and codon usageÐwhen the parameterization and evaluation
populations are both [GProt, aProt] with the Pearson correlation
as the ®gure of meritÐtogether with the parameter values of
the linear regression (LM) with [GmRNA, amRNA]. For
comparison, we also show the relative adaptiveness values
for the genome as a whole. Codons with relative adaptiveness
values of 100% (= preferential codons) are shown in black. It
is evident that both the CAI and the codon usage give the same
preferential codons.

The relative adaptiveness values for the CAI are computed
from the 21 most abundant proteins in aProt, whereas the
codon usage values stem from the four most abundant proteins
(see Table 2). Note that the preferential codons for both the
CAI and the codon usage stay the same regardless of which
parameterization and evaluation sets we choose (with the
Pearson correlation as the ®gure of merit). The only exception
is when we choose [GmRNA, amRNA] as both the parameteriz-
ation and evaluation set for the codon usage. In that case, the

Figure 3. Shows which codons are common in highly expressed genes. There are four columns for each codon. The ®rst two columns show the relative
adaptiveness values for the CAI and codon usage (CU) according to equation 1. The third column shows the regression parameters of the LM. Note that there
are only 20 values because the model contains only 20 codons as predictor variables. The fourth columns shows the relative adaptiveness values for the
genome as a whole. The relative adaptiveness values are normalized to 100 for the most frequent synonymous codons. The regression parameters are not
normalized.
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optimal parameterization set becomes relatively large
(253 ORFs) such that several of the preferential codons are
the same as the ones for the genome as a whole.

The parameters of the linear model are shown in the
third column for each codon in Figure 3. Note that the
parameters vk give the expected change of expression level for
an increase in the composition of the corresponding codon k,
given that the composition of the other codons in the model
stays the same:

@yg

@Xg;k
� vk 20

One would expect the regression parameters to roughly
correlate with the relative adaptiveness values of the CAI and
codon usage. Because the number of parameters in the linear
model is less than the total number of codons, this comparison
is only possible for synonymous codons of seven amino acids
(see Fig. 3).

Contrary to our expectation, the rank order of the regression
parameters was different than that of the relative adaptiveness
values of the CAI and codon usage for three of these seven
amino acids (Val, Cys and Arg). One (non-biological)
explanation for this different order might be the sensitivity
of the parameters. This is in fact the case for Val and Cys
where the 95% con®dence intervals of the parameter values
overlap (see Supplementary Material). However, parameter
sensitivity does not explain the different codon order for
arginine; the codon CGT has a much higher parameter value
than the codon AGA (9.7 as opposed to 4.7), contrary to the
ranking of relative adaptiveness values (see Fig. 3).

We suggest the following explanation: in contrast to the
linear model parameters, the relative adaptiveness values
describe the global enrichment of a codon in highly expressed
genes with no restrictions on the compositions of the other
codons. (This is con®rmed by the fact that the Pearson
correlation between the logarithms of amRNA and the codon
composition of AGA is larger than that between amRNA and
CGT). Thus, in the case of arginine, the reason for the
discrepancy between the linear model and the CAI/codon
usage might be that yeast cells preferentially use AGA codons
for arginine in highly expressed genes (explaining the CAI
value), but that the supply of the corresponding tRNA is
already strongly exhausted for fast growing cells. Thus, to
achieve additional translation of arginine at high rates, the cell
might need to use the supply of another tRNA for arginine
(explaining the higher regression parameter for AGA). Note
that the tRNA gene copy number is 11 for the AGA codon and
6 for the CGT codon (the highest and second highest among
all arginine codons). This way, the cell would make optimal
use of the supply of arginine tRNAs when it is already growing
fast.

DISCUSSION

Quantitative versus qualitative, genome-wide versus few
genes

The CAI and codon usage models are originally based on
somewhat qualitative assumptions about the expression levels
of relatively few genes. This was our motivation for using

quantitative, genome-wide expression data to recalculate
optimal model parameters. These new parameters sometimes
lead to a slightly better correlation of the codon-based
expression models with expression data according to several
measures, although the improvements are marginal and the
results are mixed.

Small parameterization sets are suf®cient

Furthermore, the parameterization sets that yielded optimal
parameters for the CAI and codon usage are often very small
compared to the number of genes in the genomeÐvery much
in the same way that the original parameterization sets were
small (see Table 1). Thus, very few highly expressed genes
seem to be suf®cient to describe the overall codon bias in
yeast. This shows that the original procedures for determining
the parameters of the CAI and codon usage were indeed quite
prescient. The CAI and codon usage models are relatively
insensitive to the exact choice of highly expressed genes.

One explanation for this observation might be that although
the optimal parameterization sets are small compared to the
size of the genome, their share of the overall number of
transcripts and protein copies in the cell is much larger; they
may in fact dominate the overall codon composition of
transcripts and proteins (18). This situation can be compared
with the way a ®nancial market index, composed of very few
stocks with very high market capitalization, can be a very
good approximation for the value of a total market, which
consists of perhaps thousands of individual stocks.

Thus, to obtain robust parameters for the CAI and codon
usage models, it often seems suf®cient to infer them from
rather qualitative information about gene expression levels.
For instance, it may be enough to infer from information about
biological function whether a group of genes is highly
expressed. Note that, using our parameterization procedure,
we achieved a Pearson correlation of 0.72 between the codon
usage model and the expression data (when both the evalu-
ation and parameterization population are [GmRNA, amRNA],
see Table 2). This is only a marginal improvement over the
original parameters (Pearson correlation 0.71, see Table 1)
that were derived from the codon composition of the 128
ribosomal proteins in yeast.

Comparison of the CAI, codon usage and linear models

In contrast to the linear model and the codon usage, the
parameters of the CAI are normalized by synonymous codon
usage, a constraint that is not present in the other two models.
It is therefore remarkable that the CAI model (given the best
parameterization set) usually performs as well as the other two
models. The only notable exception to this general rule is
perhaps the relatively low rank correlation of the CAI with
[GmRNA, amRNA], which is only 0.49 under the best circum-
stances (compared with 0.60 for the codon usage and 0.56 for
the linear model).

The linear model achieves the highest Pearson correlation
(0.75) with [GmRNA, amRNA], while the comparable values for
the CAI and codon usage are slightly lower (0.72 and 0.71).

Can the models be improved?

The main motivation of our study was the question whether it
would be possible to improve on existing and commonly used
codon-based models for predicting expression levels. The
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results showed that the original models are relatively robust to
the exact way they are parameterized. Perhaps such models
could still be improved if other protein properties were
included as additional features in the prediction.

We have explicitly tested whether one protein property,
namely protein length, can aid in improving the prediction
performance. It has previously been observed that longer
proteins often tend to be less highly expressed than shorter
ones (18,19). For instance, in the linear regression model one
could explicitly consider protein length by replacing the codon
fractions Xk with the number of codons (equation 16).
However, we found that this severely decreases the correlation
between the model predictions and actual expression data
(data not shown).

Codon composition is often the strongest predictor of
expression levels

Pavesi (20) proposed a model for predicting expression levels
based on several different protein properties (the CAI, the
codon bias index, an entropy score relating to synonymous
codon usage, a TATA-box score and a pyrimidine bias index)
(21). He showed in a regression analysis that the two
signi®cant parameters of the model were the CAI and the
entropy score, both measures relating to synonymous codon
usage. Pavesi reported a Pearson correlation of 0.76 with a
select set of 621 expression levels derived from SAGE data.

Linear model

As an alternative to the CAI and codon usage models, we have
proposed a simple linear model that relates codon fractions
and expression levels of genes. An advantage of the linear
model is that, unlike the numerical values from the CAI and
the codon usage, the predicted expression levels have the same
dimension as the logarithm of the actual expression levels and
are directly comparable with them. The linear model predicts
an expression level of 1.7 copies/cell for transcripts from
sequences with average codon fractions; this is equal to the
average expression level in amRNA. (This follows from
equation 11 and the fact that the average residual in the
model is equal to zero.)

We have suggested a natural, intuitive justi®cation for the
linear model, based on the CAI formalism. Of course there
might be better alternatives than the linear model. From a
mathematical standpoint, the linear regression is relatively
simple and involves much less complex computations than
non-linear regressions.

Applications

Overall, it seems justi®ed to use the CAI, codon usage or
related measures as `rules of thumb' in a variety of applica-
tions such as heterologous gene expression, either based on the
original parameters or on our newly optimized ones. For the
annotation of genomes, all three models seem to be useful,
however, they should of course only be used in conjunction
with other gene-®nding criteria (22).

The 20-parameter linear model allows us to compare the
codon parameters for seven amino acids. Surprisingly, the
linear model parameters suggest a different rank order for
the codons of the amino acid arginine. We have suggested the
explanation that fast growing yeast cells have already
exhausted the supply of the most abundant tRNA, and thus

have to make use of the tRNA corresponding to the second
best codon.

General issues of data quality

The value of the codon-based expression indicators can
perhaps be appreciated by comparing them to the correlation
of mRNA and protein abundance data in general. The
correlation for the two populations [GProt, amRNA] and
[GProt, aProt] is 0.67, well within the range of the correlations
in Tables 1 and 2 (13±15). One interpretation of this is that the
codon-based expression indicators are actually just as good as
mRNA expression data as an approximation of protein
abundance levels.

Of course, the codon-based expression indicators yield
static values, whereas gene expression is a dynamic process,
with very different expression levels under different condi-
tions. The expression data that we used in this study stems
from experiments under very similar conditions, that is, yeast
cells in vegetative growth on rich media (9±12). Thus, the
prediction of expression levels based on codon composition
should work best for these physiological situations, but might
work less well for others. Coghlan et al. have pointed to the
example of ENO1 and ENO2, which both exhibit strong codon
biasesÐthe former is repressed by high glucose concentra-
tions whereas the latter is strongly induced (19). In general, the
regulation of translation might be less ¯exible than the
regulation of transcription because the abundance of charged
tRNAs cannot be changed as ¯exibly as the abundance of
transcription factors [there are 33 cognate tRNAs in yeast, but
perhaps hundreds of transcription factors (23,24)].

Of course, there are many limitations of the expression data
itself that might confound the relationship between expression
levels and codon composition. The 2D-gel data is subject to
many biophysical and biochemical constraints (13,14,25). The
situation is somewhat better for the mRNA expression data,
where we have more data resources that we combined in this
study.

SUPPORTING WEBSITE

Additional data relating to our analysis is available at: http://
bioinfo.mbb.yale.edu/expression/codons.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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