
 

U:\GENOME\CONTENT\PRIMARY\Luscombe\Edited\L0302201bp2.doc 13/06/02 

1 

Typesetter: there are 'picture' equations as display items in text and in text in Figure 1 

legend. p8 and p20 

[Penny: Ref 20 is submitted. It will probably have been accepted before you publish this, 

but have added a note to the authors that if it isn't they must cite it in text as 

unpublished work and renumber refs accordingly. OK?] 



 

U:\GENOME\CONTENT\PRIMARY\Luscombe\Edited\L0302201bp2.doc 13/06/02 

2 

Power-law behavior applies to a wide variety of genomic properties 

Nicholas M Luscombe, Jiang Qian, Zhaolei Zhang, Ted Johnson and Mark Gerstein 

Address: Department of Molecular Biophysics and Biochemistry, Yale University, New 

Haven CT 06520-8114, USA. 

Correspondence: Mark Gerstein. E-mail: mark.gerstein@yale.edu 

 

Abstract [AUTHOR: abstract slightly shortened - it needs to be 250 words or less] 

Background: The sequencing of genomes provides us with an inventory of the 'molecular 

parts' in nature, such as protein families and folds, and their functions within living organisms. 

Through the analysis of such inventories, it has been shown that different genomes have very 

different usage of parts; for example, the common folds in worm proteins are very different 

from those in Escherichia coli. 

Results: Despite these differences, we find that the genomic occurrence of generalized parts 

follows a well-known mathematical framework called the power law, with a few parts 

occurring many times and most occurring only a few times. We find this observation to be 

true in a wide variety of genomic contexts. Earlier studies found power laws in a number of 

specific cases, such as the occurrence of protein families. We find many further cases of 

power-law behavior, for example in pseudogenes and gene-expression levels. We show 

comprehensively that power-law behavior applies across many different genomes, for many 

different types of parts (DNA words, InterPro families, protein folds, pseudogene families and 

pseudomotifs), and for the many disparate attributes associated with these parts (their 

functions, interactions and expression levels). 

Conclusions: Power-law behavior provides a concise mathematical description of an 

important biological feature: the sheer dominance of a few members over the overall 

population. We present this behavior in a unified framework and propose that all these 
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observations are connected to an underlying DNA duplication process as genomes evolved to 

their current state.  

 

Background {1st level heading} 

Power-law behaviors have been observed in many different population distributions. Also 

known as Zipf's law, [AUTHOR: OK? We do not use footnotes in Genome Biology. 

Please insert any additional comment as part of the main text] one of the most famous 

examples is the usage of words in text documents [1]. On grouping words that occur in similar 

numbers, it was noted that a small selection of words such as 'the' and 'of', are used many 

times, while most are used infrequently. When the size of each group is plotted against its 

usage, the distribution can be approximated to a power-law function; that is, the number of 

words (N) with a given occurrence (F) decays according to the equation N = aF-b. This 

distribution has a linear appearance when plotted on double-logarithmic axes, where -b 

describes the slope. Some other examples of this behavior include income levels [1], relative 

sizes of cities [1] and the connectivity of nodes in large networks [2] such as the World Wide 

Web [3].  

 

In regard to genomic biology, Mantegna et al. [4] discussed the fact that the usage of short 

base sequences in DNA, or 'DNA words', also follows the power law. They concluded that the 

behavior applies better to non-coding than to protein-coding sequences and suggested that 

non-coding DNA resembles a natural language. Further instances cited in genomic biology 

include the occurrence of protein families or folds [5-9], the connectivity within metabolic 

pathways [10] and the number of intra- and intermolecular interactions made by proteins [11-

13].  
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From the analysis of over 20 of the first genomes sequenced, we show that the power-law 

behavior is prominent throughout genomic biology. As noted above, previous studies have 

reported the occurrence of power-law behaviors for individual properties. Here we report the 

behavior for further genomic properties that have not previously been found; in particular, for 

the occurrence of pseudogene and pseudomotif populations in the intergenic regions of 

genomes, the number of protein functions associated with a particular fold, and the number of 

expressed transcripts within a cell. Furthermore, we bring together all the individual 

observations within a single framework and demonstrate that the power-law behavior is 

prevalent across most different genomic properties. Finally, in presenting these data, we 

discuss the significance of power laws in biology, and discuss several models that aim to 

describe how genomes evolved to their current states to produce this type of behavior. 

 

Results {1st level heading} 

Genomic occurrence of 'mers, families and folds {2nd level heading} 

We start with the usage of short DNA sequences in genomes; we consider DNA words of size 

n, termed n-mers, and count the occurrence of distinct words by shifting across the entire 

genome one base at a time. By grouping the different 'mers by their occurrences, we observe 

that the occurrence of 6- to 10-mers displays power-law-like behavior. Figure 1a shows the 

distributions of 6- to 10-mers in the Caenorhabditis elegans genome. The distribution for 

each 'mer is staggered, which, unsurprisingly, indicates that shorter words have a higher 

average occurrence in the genome than longer ones. A more unexpected feature of the plot is 

that the slopes for the different-length words are nearly identical (b = 3.2), indicating that the 

number of 'mers with given occurrences fall at similar rates regardless of their length. 

Moreover, we find that 'mers in both coding and non-coding regions follow the power-law 

distribution equally well (see Additional data). 
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Having observed the occurrence of short 'mers, we now shift our focus towards the coding 

regions of genomes. Most proteins encoded in a genome can be grouped according to their 

similarity in three-dimensional structure or amino-acid sequence. The most common 

classifications of proteins are the fold, superfamily and family [14]; each class is a subset of 

the one before, and groups proteins with increasing similarity. First, proteins are defined to 

have a common fold if their secondary structural elements occupy the same spatial 

arrangement and have the same topological connections. Second, proteins are grouped into 

the same superfamily if they share the same fold, and are deemed to share a common 

evolutionary origin, owing to a similar protein function, for example. Both the fold and 

superfamily classes aim to group proteins that are structurally related, but whose similarities 

cannot necessarily be detected only by their sequences. Finally, proteins are grouped into the 

same family if their amino-acid sequences are considered similar, most commonly using a 

measure of percentage sequence identity or an E-value cut-off. Alternatively, they can also be 

characterized by the presence of a particular sequence 'signature' or 'motif'. Here, we have 

used the fold and superfamily assignments from the SCOP [14] and Superfamily databases 

[15] and the family classifications from InterPro [16,17].  

 

By analogy with the earlier 'mers, proteins encoded in a genome can be thought of as longer 

DNA words. Therefore, by grouping proteins in the classification system above, we can 

measure the occurrences of collections of sequences of around 1,000-mers in the genome. As 

we explained above, members of the same superfamily have often diverged beyond detectable 

sequence similarity and, in the case of folds, may have independently converged to similar 

structures from unrelated DNA sequences. Nevertheless, the occurrences of families, 

superfamilies, and folds in the worm approximate to a power-law behavior quite well (Figure 
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1a). In fact, despite the differing definitions of families, superfamilies and folds, the resulting 

distributions for each group are very similar. Compared to the 6- to 10-mers, the distributions 

fall off more gradually (b = 1.0-1.2); this indicates a greater difference in the relative 

occurrence of the most and least common families. 

 

Returning to the non-coding regions of the genome, we also plotted the occurrence of 

pseudogene families and pseudomotifs found in intergenic DNA (Figure 1b). Whole 

pseudogenes were found by searching for matches to SWISS-PROT protein sequences in 

intergenic DNA, and are usually characterized by frameshift mutations or early stop codons 

that prevent normal transcription [AUTHOR: do you mean 'translation' here?] [18,19]. 

Therefore, they encode non-functional protein sequences. As with functional proteins, 

pseudogenes were classified into families using InterPro. Pseudomotifs were found by 

matching PROSITE motifs in intergenic DNA and are thought to be more ancient 

pseudogenes that have accumulated so many mutations that only small fragments of 

recognizable motifs remain [20]. These fragments are classified according to the PROSITE 

classification. As shown in Figure 1b, the occurrences of pseudogenes and the fragments also 

follow a power law. The distribution for pseudogenes is similar to that for protein families 

and folds (b = 1.8); this is expected, as pseudogenes in the worm represent a population of 

DNA sequences that used to encode functional proteins. The distribution of occurrences for 

pseudomotifs (b = 0.9) has a wide spread and actually bridges those of protein families and 

'mers. This is probably because the most frequently occurring PROSITE motifs are only 5-10 

amino acids in length, and therefore are similar to 'mers, whereas the less frequently occurring 

motifs are longer (82 amino-acid residues), and so resemble protein families.  
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Our findings for the worm genome also apply to at least 20 other prokaryotic and eukaryotic 

organisms. Figure 1c shows InterPro family distributions in Mycoplasma genitalium, 

Escherichia coli, Saccharomyces cerevisiae and Drosophila melanogaster [AUTHOR: OK 

as edited?]; other distributions from many of the recently sequenced genomes are available 

from our website [21]. Interestingly, smaller genomes (b = 1.0-2.0) tend to have a steeper fall-

off than larger genomes; with fewer genes, it would seem natural to expect a narrower 

distribution in these organisms. Given the prevalence of the power-law behavior, it is likely to 

be universal to other genomes yet to be analyzed. [AUTHOR: OK?]  

 

Functions, interactions and expression levels {2nd level heading} 

The power law is not only found in the occurrence of words, families, and folds, but also 

extends to further genomic features of biological macromolecules. As shown in Figure 1d, the 

distribution fits the number of distinct functions held by a particular protein fold [22,23]. 

Most folds are only associated with only one or two functions, whereas a few, such as the 

TIM barrel, have up to 16 (b = 2.2). The behavior also applies to the number of distinct 

protein-protein interactions made by different folds (b = 1.2), and the number of transcripts 

for each protein family in yeast in a given cellular state (b = 1.6).  

 

Is the power-law function the best fit? {2nd level heading} 

We have so far demonstrated that disparate types of data display power-law behavior. Not all 

genomic properties follow a power law, however, and examples include occurrences of 'mers 

shorter than six bases, the occurrence of particular amino acids in proteins, [AUTHOR: OK 

as edited?]and the number of residues that are involved in protein flexibility (Figure 1f). 

 



 

U:\GENOME\CONTENT\PRIMARY\Luscombe\Edited\L0302201bp2.doc 13/06/02 

8 

The original publication by Mantegna et al. resulted in a prolonged debate as to whether the 

power law is actually the best fit for the 'mer distribution [24-29], and similar discussions are 

found for power-law behavior outside biology [30-33]. Previous publications have only tested 

the suitability of individual functions. In Figure 1e, however, we examine the best-fit curves 

of seven alternative functions for protein-fold occurrence in the worm: linear, exponential, 

double-exponential, triple-exponential, stretched-exponential, lognormal and Yule 

distributions. The Yule distribution in particular was reported as providing a better fit for the 

occurrence of 'mers than the power law [28], and the stretched-exponential and lognormal 

distributions have been cited as providing good fits for non-biological data. 

 

We measure the fit of each function by calculating the residual between actual protein-fold 

occurrence and the mathematical functions as follows: 

 

( )∑ −= 2)()( fittedNactualNR  

 

For example, for the fits in Figure 1e we use the following equation:  

 

( )∑ −= 2)()( fittedNwormNR foldsfoldsfolds  

 

In this calculation, a smaller residual (R) indicates a better fit between the data and the 

mathematical functions. 

 

The main differences in the fit appear at the tail of the distribution, at high fold occurrences. 

Although most functions describe the lower end of the distribution well, they do not extend 

far enough at the upper end of the distribution. The linear and single-exponential curves 
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clearly do not describe the data well. The double-exponential curve provides a reasonable fit 

for lower genomic occurrences, but diverges from the data at higher values. The same applies 

for the stretched-exponential and Yule distributions. 

 

Two functions perform well: the triple-exponential and the lognormal distributions. In fact, 

the triple-exponential displays a smaller residual than the power-law function and one would 

expect higher-order exponentials to provide increasingly better fits. However, this is at the 

expense of having more free parameters to fine-tune the shape of the curve. As the fold 

distribution actually displays a wide spread of values - especially for higher occurrences 

(Figure 1a,d) - we conclude that all three mathematical functions describe the data equally 

well. The same also applies to the other genomic data we discussed earlier. However, given 

the fit across many different biological distributions, combined with the relative simplicity of 

the function compared to the higher-order-exponential and lognormal distributions, we 

suggest that the power law provides the best description of the data. 

 

Discussion {1st level heading} 

The significance of power-law behavior {2nd level heading} 

Although the power-law behavior has previously been detected in individual biological 

distributions [4-13], this is the first time it has been reported for such a wide group of 

properties associated with genomes. Moreover, here we demonstrate for the first time that 

power-law distributions are applicable to the occurrence of pseudogene and pseudomotifs in 

intergenic regions, the number of functions associated with a protein fold, and the expression 

levels of different protein families.  
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At first glance, these observations might appear to be 'biological trivia'. However, power-law 

behavior actually provides a concise mathematical description of an important biological 

feature: the sheer dominance of a few members over the overall population. For example, out 

of the 247 distinct protein folds currently assigned in the worm genome, just 10 account for 

over half of the 7,805 assigned domains. The top fold, the immunoglobulin-like β-sandwich, 

accounts for about 829 (10.6%) domains in the genome. For protein superfamilies, 21 out of 

606 families account for half of the 15,450 assigned domains, and only 37 of 1,936 InterPro 

families match half of the 12,589 assigned proteins. Half of all pseudogenes belong to 10 (out 

of a total of 70) protein families, and just two types of motif make up over half of 

pseudogenic PROSITE fragments.  

 

Power-law behavior also describes similar underlying observations for the remaining data. 

For protein-protein interactions, we find that 6 out of 39 protein folds in the yeast genome 

make up half of the 89 known combinations of interdomain interactions, and for gene-

expression levels in yeast, proteins from just 12 out of a total 145 folds comprise half of all 

the transcripts in the cell at any given state. 
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Power-law behavior and the underlying evolutionary mechanism {2nd level heading} 

Having discussed the significance of power-law behaviors, this leads us to the question of 

how genomes achieved these distributions. Given a mathematical description common to 

many genomes and different genomic properties, it is possible to define evolutionary models 

that replicate the power-law distributions. Recently, several papers have attempted to answer 

this question from a theoretical perspective by building mathematical models for evolution.  

 

Mantegna et al. [4] drew analogies with Zipf's original work to suggest that the behavior for 

'mers originate from similarities between DNA sequences and natural languages. This 

suggestion attracted extensive criticism [24-29] and the work of Li [34][AUTHOR: please 

add this reference to the reference list] demonstrated that power-law-like behavior could in 

fact simply arise from non-equal occurrences of words in random texts. Shorter 'mers (< 6-

mers) fail to display power-law behavior because there are insufficient numbers of distinct 

words to differentiate levels of occurrence. The 4- and 5-mers have larger numbers of distinct 

sequences and there are hints of power-law behavior in the tails of their distributions (Figure 

1d). For 6-mers and above, the reason that words of different lengths have identical slopes is 

because their distributions are not independent of each other; longer words also contain 

combinations of the shorter words.  

 

Although random DNA sequences provide a possible explanation for power-law behavior 

with 'mers, the same is unlikely to apply to protein sequences. Rather, at these levels the 

distributions probably arise from evolutionary development centered on an underlying process 

of gene duplication. If we treat gene duplication as a stochastic process, the chance of a given 

gene duplicating is proportional to its occurrence in the genome. With each duplication, some 

genes increase their presence in the genome, enhancing their chance of further duplication. 
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Combined with selective pressure accounting for the functional significance of different 

protein products, such a process gives prominence to some gene types, or families, over 

others. Previous studies outside genomic biology have linked such stochastic dynamical 

processes to power laws [35-38]. 

 

Three evolutionary models proposed by Huynen and van Nimwegen [6], Yanai et al. [39] and 

Qian et al. [9] successfully replicated the observed biological data using such a duplicative 

process. All three models rely heavily on gene duplication as the underlying process and, in 

fact, this process on its own would result in an exponential distribution. Each model achieves 

the power-law distribution by emulating biological processes that perturb the duplicative 

processes; this is done by including parameters that simulate selective pressure, point 

mutations or lateral gene transfer.  

 

In the first model, of Huynen and van Nimwegen [6], gene families start the simulation with 

one member each. Each family is allowed to expand or contract in size through successive 

multiplications with a random factor, which represents duplication or deletion events 

depending on its value. In the second model, that of Yanai et al. [39], genomes evolve from a 

set of precursor genes to a mature size by random gene duplications and gradual accumulation 

of modifications through point mutations. When an individual family member acquires 

enough random mutations, it breaks away to form a new family. Finally in the third model, 

that of Qian et al. [9], genomes evolve from their initial small size using two basic operations: 

first, duplication of existing genes to expand the size of existing families, and second, the 

introduction of completely new genes by lateral transfer from other organisms or ab initio 

creation. Both components are vital for replicating the observed data. In this paper, we have 

discussed the finding that genomic distributions first take on an exponential appearance and 
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then adopt a power-law behavior after a sufficiently long evolutionary process. In a similar 

vein, a recent paper by Rzhetsky and Gomez [13] introduced a model in which the underlying 

DNA duplication mechanism, combined with random production of an inter-protein 

interaction, successfully simulates the power-law distribution for interaction networks in 

yeast. 

 

This leads us to speculate on a possible explanation of power-law behaviors for the other 

properties. For protein functions, folds with high occurrence in the genome also tend to have 

diverse functions; thus the P-loop-containing NTP hydrolase fold is found 130 times in yeast, 

and has at least six distinct enzymatic functions [21]. Parallel to this, we find that folds with 

many protein-protein interactions also tend to hold more diverse functions [40]; for example, 

the NTP hydrolase fold is currently associated with nine interdomain interactions within 

yeast. Finally, the state of the transcription-regulatory mechanism in a particular cellular state 

clearly has the most important role in determining gene-expression levels. However, it has 

previously been shown that some gene families with high occurrences also display high 

expression levels under diverse experimental conditions [41]. Given the correlation of 

different genomic properties with the occurrence of gene families in the genome, we can 

reason that they are connected to an underlying duplicative process for gene expression.  

 

In linking all power-law behaviors to a common duplicative process, the main argument 

supporting this view is the correlation between the occurrence of different genomic properties 

and the fit between the distributions of the biological data and the models. Although these 

models are based on well-known biological processes, there is, unfortunately, little 

experimental evidence to directly confirm the validity of these models. However, it is worth 
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noting that most of the properties that do not follow a power law (Figure 1d) are those that are 

clearly not directly connected with gene duplication. 

 

Additional data files {1st level heading 

Additional data files comprising ....... [AUTHOR: please provide a brief description of the 

data] are available with this paper online and from [21]. 
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[AUTHOR: table has been rearranged to fit page width. OK?] 

Table 1 

List of genomic properties that display power-law behavior and the associated exponent 

(b) for the best-fitting power-law function 

 

Organism Exponent b 
 6-10-

mers 
Protein 
families 

Protein 
super-
families 

Protein 
folds 

Pseudo-
motifs 

Pseudo-
gene 
families 

Functions 
per protein 
fold 

Inter-
actions 
per 
protein 
fold 

Trans-
cripts 
per 
protein 
family 

Mycoplasma 
genitalium 

3.7 1.7 -0.1 1.9 - - - - - 

M. pneumoniae 3.5 1.6 -0.1 1.8 - - - - - 
Rickettsia 
prowazekii 

3.7 1.7 1.6 1.9 - - - - - 

Chlamydia 
trachomatis 

3.7 1.7 -0.1 1.9 - - - - - 

Treponema 
pallidum 

3.4 1.6 -0.1 1.7 - - - - - 

C. pneumoniae 3.6 1.6 1.5 1.7 - - - - - 
A. aeolicus 3.8 1.7 -0.1 1.9 - - - - - 
Helicobacter 
pylori 

3.5 1.6 -0.1 1.7 - - - - - 

Haemophilus 
influezae 

3.4 1.5 -0.1 1.6 - - - - - 

Methanococcus 
janaschii 

3.5 1.6 -0.1 1.7 - - - - - 

Methanococcus 
thermoautotrop
hicum 

3.8 2.0 1.8 2.2 - - - - - 

P. horikoshii 3.9 1.9 1.7 2.0 - - - - - 
A. fulgidus 3.8 1.8 1.6 1.9 - - - - - 
Synechocystis 
sp. 

3.4 1.6 -0.1 1.7 - - - - - 

Mycobacterium 
tuberculosis 

3.4 1.5 -0.1 1.6 - - - - - 

Bacillus subtilis 3.3 1.4 -0.1 1.5 - - - - - 
Escherichia 
coli 

3.2 1.5 -0.1 1.6 - - - - - 

Saccharomyces 
cerevisiae 

3.2 1.4 -0.1 1.5 0.9 1.5 1.6 2.2 1.2 

Caenorhabditis 
elegans 

3.1 1.1 -0.1 1.2 1.0 1.8 - -  

Drosophila 
melanogaster 

3.3 1.2 -0.1 1.3 1.2 - - -  

Human 
chromosomes 
21 and 22 

- - - - 1.0 1.9 - -  
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{Figure legends} 

Figure 1 

[AUTHOR: please supply short overall title for figure.] (a) The occurrence of DNA words, 

InterPro families and protein folds in the worm genome. Black diamonds, 6-mers; dark-gray 

diamonds, 7-mers; mid-gray diamonds, 8-mers; light-gray diamonds, 9-mers, open diamonds, 

10-mers; red circles, gene families; open green squares, protein superfamilies, blue crosses, 

protein folds. The solid lines represent the best-fit power-law functions for each distribution. 

The slopes (exponent b) are given on the plots. The worm genome was taken from the 

database at the National Center for Biotechnological Information [42], the family assignments 

were obtained from the InterPro proteome database [43], and the fold assignments from the 

Partslist database [21]. (b) The occurrence of pseudogene families (open green squares) and 

pseudomotifs (black crosses) in the worm intergenic regions. Solid red line, best-fit line for 

worm InterPro families. (c) The occurrence of  InterPro families in M. genitalium (black 

diamonds); E. coli (dark-gray diamonds); S. cerevisiae (mid-gray diamonds); and D. 

melanogaster (open diamonds). (d) Other properties that follow the power law. Black crosses, 

the number of assigned functions for each fold; open blue squares, the number of protein-

protein interactions each fold makes in the yeast two-hybrid experiment, open green circles, 

the number of transcripts of each fold during vegetative growth in yeast. (e) Best-fit functions 

for the occurrence of protein folds in the worm genome (blue crosses): linear (y = a – bx), 

exponential (y = ae-bx), double-exponential (y = ae-bx + ce-dx), triple exponential (y = ae-bx + 

ce-dx+ fe-gx), stretched-exponential (y = exp( )
x

C
A

β− ), lognormal (y = 

2

2

1 (log )
exp( )

22

x

x

µ
σπσ

−− ), Yule (y =
)1( +xx

a
) and power-law functions (y = ax-b). The 

residuals (R) between the functions and genomic data are calculated as 
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( )∑ − 2)()( fittedNwormN foldsfolds . (f) Properties that do not follow the power law. The 

occurrence of 3-mers (open blue squares); 4-mers (green crosses); and 5-mers (open dark-blue 

squares) in the worm genome. Open blue circles, the average composition of asparagine in 

different folds; open red diamonds, the number of residues involved in protein flexibility in 

different folds.  


