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Global surveys of genomes measure the usage of essential molecular
parts, de®ned here as protein families, superfamilies or folds, in different
organisms. Based on surveys of the ®rst 20 completely sequenced gen-
omes, we observe that the occurrence of these parts follows a power-law
distribution. That is, the number of distinct parts (F) with a given geno-
mic occurrence (V) decays as F � aVÿb, with a few parts occurring many
times and most occurring infrequently. For a given organism, the distri-
butions of families, superfamilies and folds are nearly identical, and this
is re¯ected in the size of the decay exponent b. Moreover, the exponent
varies between different organisms, with those of smaller genomes dis-
playing a steeper decay (i.e. larger b). Clearly, the power law indicates a
preference to duplicate genes that encode for molecular parts which are
already common. Here, we present a minimal, but biologically meaning-
ful model that accurately describes the observed power law. Although
the model performs equally well for all three protein classes, we focus on
the occurrence of folds in preference to families and superfamilies. This is
because folds are comparatively insensitive to the effects of point
mutations that can cause a family member to diverge beyond detectable
similarity. In the model, genomes evolve through two basic operations:
(i) duplication of existing genes; (ii) net ¯ow of new genes. The ¯ow
term is closely related to the exponent b and can accommodate consider-
able gene loss; however, we demonstrate that the observed data is repro-
duced best with a net in¯ow, i.e. with more gene gain than loss.
Moreover, we show that prokaryotes have much higher rates of gene
acquisition than eukaryotes, probably re¯ecting lateral transfer. A further
natural outcome from our model is an estimation of the fold composition
of the initial genome, which potentially relates to the common ancestor
for modern organisms. Supplementary material pertaining to this work is
available from www.partslist.org/powerlaw.
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The power-law behaviour is frequently observed
in different population distributions. Also known
as Zipf's law, it was ®rst widely recognised for
word usage in text documents.1 By grouping
words that occur in similar amounts, Zipf observed
that a small number of words such as ``the'' and
``of `` are used many times, while most are used
infrequently. When the size of each group is plot
against its usage, the distribution follows a power-
lly to this work.
ing author:
law function. That is, the number of words (F)
with a given occurrence (V) decays according to
the equation F � aVÿb, a distribution that has a lin-
ear appearance when plot on double-logarithmic
axes. Mandelbrot2 suggested that the observation
is connected with the hierarchical structure of natu-
ral languages and further work by Zipf described
the behaviour for the relative sizes of cities, income
levels, and the number of papers per scientist in a
®eld.1

Subsequent to this, power laws have also been
reported for the construction of large networks.
Examples include social interactions,3 the World
# 2001 Academic Press
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Wide Web,4,5 metabolic pathways,6 and the inter-
molecular interactions of different proteins.7 Bara-
basi & Albert8 proposed that this results from self-
organising development, in which new vertices
preferentially attach to sites that are already well
connected.

Interestingly, the power-law behaviour is intrin-
sic to the usage of short nucleotide sequences9 and
the populations of gene families in genomes.10,11

Here we report this for the occurrence of protein
superfamilies and folds also. However, despite
these observations in genomic biology, there have
been few attempts to explain them. Using analo-
gies to text documents, Mantegna and co-workers9

implied that the behaviour originated from simi-
larities of DNA sequences with natural languages.
We argue this to be highly unlikely, and instead
propose a simple, biologically reasonable model of
evolution. Furthermore, although the sequence of
any individual genome provides only a snapshot
of evolutionary time, constructing such a model
increases our understanding of how it arrived at
the current state.

Protein family, superfamily, and fold
occurrence in genomes

Most proteins that are encoded in a genome can
be grouped according to their similarity in three-
dimensional structure or amino acid sequence.
Here we consider the fold, superfamily and family
taxonomies that provide a hierarchical classi®-
cation of proteins;12 each class is a subset of the
one before, and proteins are grouped with increas-
ing similarity between them. First, proteins are
de®ned to have a common fold if their secondary
structural elements occupy the same spatial
arrangement and have the same topological con-
nections. Next, proteins are grouped into the same
superfamily if they share the same fold, and are
deemed to share a common evolutionary origin,
for example owing to a similar protein function.
Both the fold and superfamily classes aim to group
proteins that are structurally related, but whose
similarities cannot necessary be detected only by
their sequences. Finally, proteins are grouped into
the same family if their amino acid sequences are
considered to be similar, most commonly by their
percentage sequence identities or using an E-value
cut-off. Alternatively they can also be characterized
by the presence of a particular sequence ``signa-
tures'' or ``motifs''. Here we have used the fold
and superfamily classi®cations from SCOP12 and
the family classi®cations from InterPro;13,14 the
three will be collectively termed as molecular
``parts``.

One way to represent the contents of a genome
is to count the number of times that each part
occurs and then group together those with similar
occurrences (Figure 1(a)). In ranking parts by their
occurrence, it is clear that for all organisms most
occur just once, some occur several times and a
few are found many times.10,15 ± 17 For example, the
229 folds assigned in the Escherichia coli genome
have an average occurrence of seven: 72 (31.4 %)
folds are found just once, 45 (19.7 %) are found
twice, and only ten (4.4 %) occur more than 30
times. The most common, the TIM-barrel fold,
occurs 93 times in the genome. Similar obser-
vations can be made for families: 303 (23.6 %)
occur once; 222 (17.3 %) occur twice and the most
common; the AAA-ATPase proteins, occurs 86
times. Previous studies have shown these distri-
butions to be an actual feature of genomes, rather
than a result of bias in the contents of classi®cation
databases.18

Signi®cantly, this relationship is described by a
power-law, in which the number of parts (F) with
a certain genomic occurrence (V) decays with the
equation F � aVÿb. The distribution has a linear
appearance when plot on a log-log graph, where
ÿb de®nes the slope. The power-law function that
produces the smallest residual has the best ®t with
the genomic data (Figure 1(b)). Figure 2 shows the
distributions of families, superfamilies and folds
for Escherichia coli and Saccharomyces cerevisiae, and
plots for the 18 other organisms are available in
the supplementary website (Supplementary
Material). We note that the overall distributions of
all three classi®cations are very similar within each
genome, and share near-identical gradients. In gen-
eral, the smaller the genome, the steeper the gradi-
ent: the two eukaryotes have shallow gradients
(b � 0.9-1.2) while the prokaryotes with smaller
genomes have steep gradients (b � 1.2-1.8).

An evolutionary model

Given a mathematical description that is com-
mon to all organisms, we can simulate the
observed distributions. Our model is based on an
evolutionary process in which genomes start from
a small size with a limited number of genes and
grow to their current states by gaining new ones.
The main sources for new genes are from dupli-
cation of existing ones, and introduction of comple-
tely novel genes via lateral transfer from other
organisms or ab initio creation.

Although our model would apply equally well
to any of the three protein classi®cations (families,
superfamilies and folds), we have decided to
de®ne the relationships between different genes by
their folds. This is mainly because of how proteins
are grouped into families or superfamilies. With
families, as proteins accumulate mutations over
time, they can diverge too much for their common
origin to be detected by sequence comparison.
Thus, individual proteins give the impression of
``breaking away'' to form a new group during the
course of evolution. Superfamily classi®cations,
particularly those in SCOP, try to address this
issue by grouping together all proteins that have
diverged from a common ancestor, even if they
have diverged beyond detectable sequence simi-
larity. These more distant groupings usually
depend on proteins sharing distinct structural fea-



Figure 1. Representations of the
occurrence of protein folds in com-
plete genomes and a schematic dia-
gram of the evolutionary model.
The main computational method
for making family, superfamily or
fold assignments to the protein pro-
ducts of genomes (proteomes) is to
detect sequence homologies
between the genes and proteins
whose sequence or structures have
been classi®ed. Superfamily and
fold matches were made using PSI-
BLAST44 against the SCOP data-
base44 and assignments are avail-
able for 17.6-34.6 % of the gene
sequences in the 20 genomes under
consideration. These are available
from http://www.partslist.org. Family
assignments were obtained from
the InterPro database from http://
www.ebi.ac.uk/interpro.13,14. (a) The
structural contents of a genome can
be represented by counting the
number of times different protein
folds occur and then grouping
together those with similar occur-
rences. (b) This relationship is
described by a power-law, in
which the number of folds (F) with
a certain genomic occurrence (V)
decays with equation F � aVÿb. The
vertical axis gives the number of
folds, normalized by the total num-
ber of fold types in the genome,
against the occurrence of each fold.
We show the data for E. coli (&),
and the ®tted power-law function
(Ð). (c) The observed distribution
can be simulated by a model in
which genomes grow from an
initial small sizes to their current
states by duplicating existing genes
and acquiring new ones by lateral
transfer or ab initio design. (d) The
model effectively simulates the
evolution of individual genomes
from the root of the phylogenetic
tree to the branch representing the
organism (Ð). (1) The model starts
with an initial genome. (2) During
evolution genomes diverge into
different organisms by starting
their own course of evolution. (3)
Simulations end when the current
size of the genome is achieved. (4)
Different genomes retain the same
set of genes that were present at
the point of divergence; these com-
mon sets of genes are schematically
represented by markers above each
genome.

Power-law Behaviour and Evolutionary Model 675



Figure 2. The occurrence of InterPro families (}),
SCOP superfamilies (�) and folds (&) in (a) E. coli and
(b) S. cerevisiae. The distributions for the three gene
classi®cations are similar and follow power-law beha-
viour (Ð).
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tures, for example the same active site location in
the fold. However, much of the classi®cation is
subjective and does not involve the application of
uniform thresholds. In contrast, folds do not suffer
from these drawbacks. Genes can accumulate sig-
ni®cant changes to their sequences without affect-
ing their fold classi®cation.19 Furthermore,
although there is the danger that two proteins
have adopted similar structures through conver-
gent evolution, membership to a fold class
can be determined objectively by applying
clear thresholds to structural comparison
algorithms.20 ± 22 Therefore we focus on folds as a
taxonomy that groups the most divergent collec-
tion of genes that we consider to have evolved
from a common ancestor. In practice though, given
the similarity in the genomic distributions of
families, superfamilies and folds, the choice of
classi®cation will not greatly affect the simulations.

Consider a genome that originally comprises N0

folds, with only one copy of each, i.e. the number
of genes equals the number of folds. The genome
grows by a step-wise duplication event, randomly
selecting a gene. The probability of fold duplication
is proportional to its current occurrence in the gen-
ome; so all folds initially have equal probabilities
for duplication, 1/N0. After the ®rst time-step,
the duplicated fold occurs twice and has a new
probability for duplication 2/(N0 � 1), while the
remaining folds have a decreased probability
1/(N0 � 1). At each time-step, we also consider the
introduction of new folds and the deletion of exist-
ing ones. The rate of fold ¯ow, r (� fold acquisi-
tion ÿ fold deletion), is measured as the ratio with
respect to duplication events. Here we consider the
average rate over the entire course of evolution
and the parameter remains constant throughout
the simulation. We assume that multiple copies of
a given fold arise only through duplication. Thus,
the behaviour of this simple model is governed by
three parameters: the initial size of the genome
(N0); the number of duplication events or gener-
ations (t); and the rate (r) of fold ¯ow per gener-
ation. A schematic of the model is shown in
Figure 1(c).

In effect, the model follows the development of a
single genome from the root of the phylogenetic
tree to the branch that de®nes the organism
(Figure 1(d)). Therefore, although the simulation
may appear to treat each genome independently,
we can imagine that the evolution of different
organisms relate by their divergence from a com-
mon ancestor.

Gene loss is also a major factor during evolution
and we could easily include this as an explicit par-
ameter in our model. However, we are reluctant to
do so, because introducing another free parameter
would seriously compromise our comparisons of
the model against the observed genomic data.
Instead gene loss is incorporated within r and t. If
a fold only occurs once, then a deletion would
remove it from the genome, thus giving a smaller r
value. Here, positive values of r signify a net
in¯ow of folds and negative values indicate an
overall loss. Alternatively, if a fold has multiple
copies, deleting a gene would simply reduce its
occurrence, which effectively amounts to stepping
back in the simulation or ``unduplicating'' the
gene.

The behaviour of the model

Different parameter values result in distinct dis-
tributions. It is important to remember that these
values correspond to averages for the whole evol-
utionary process and are ®xed for each simulation.
(i) When r 4 0, the distribution never approaches
a power law even after a large number of gener-
ations (t). This eliminates the possibility of a nega-
tive r value as the actual genomic data follows the
power law. Furthermore, such a process would
leave the genome without any folds that have
single occurrences. Thus henceforth, we will refer
to fold ¯ow as fold acquisition. (ii) For a ®xed r > 0
and N0, the distribution is exponential for small
numbers of generations (t), but converts to a
power law for large values of t (Figure 3(a)). (iii)
Provided that r and t meet the requirements, a
power-law distribution can be obtained for any
initial genome size, N0 > 0. (iv) Once the simulation
reaches the power-law phase, the gradient (b) of
the distribution stays constant with continued
increments in t. Therefore, the slope is mostly
attributed to the size of r.

The main observations are summarized in the
phase diagram of Figure 3(b), which plots the tran-



Figure 3. (a) Average distributions obtained after 500
simulations. For small t, the distribution is exponential:
N0 � 100, r � 0.6, t � 100 (}), for large t, the distribution
is power-law: N0 � 100, r � 0.6, t � 30,000 (&). The con-
tinuous lines are the ®tted exponential (y � aeÿx) and
power-law (y � axÿb) functions. (b) Phase diagram
depicting the transition between exponential and power-
law distributions for different r, t and N0. We do not
show distributions for negative values of r and t because
they are biologically implausible. The nature of the
simulated distributions is determined from the residuals
of optimally ®tted functions, i.e. if the residual for the
exponential function is smaller than the residual for the
power-law function, the distribution is considered expo-
nential and vice versa. The transition boundaries follow
the parameter values for which the residuals are equal
for both functions. While the conversion between the
two phases is gradual, simulated distributions are expo-
nential below the transition line and power-law above.
The threshold t required for a power-law is inversely
correlated with r, and there is a rightward shift in the
transition boundary for larger initial genome sizes (N0).
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sition between the two distributions types for
different r and t. While the conversion is gradual,
distributions are exponential below the transition
boundary and power law above. We note that the
threshold t-value required for the power-law phase
is inversely correlated to r, so smaller numbers of
generations are required for higher rates of fold
acquisition. We also highlight the rightward shift
of the transition line for increased N0, so for a
given rate r, larger initial genomes require more
generations to reach a power law. In summary, we
show that the dominant trend during the initial
stage of evolution is towards an increase in the
number of genes rather than a decrease and that
gene deletion is not a major effect. In addition, we
®nd that exponential distributions result from a
``sampling'' process in which the existing folds are
duplicated, but the power-law distribution derives
from a suf®ciently long ``evolutionary'' process in
which folds are also periodically acquired.

Estimation of parameters

Having described the general features of the
model, we now simulate the actual distributions
that are observed in different genomes. The three
parameters we just discussed are all related to the
evolutionary history of an organism and appear
unattainable. However, we can obtain estimates by
looking at the current states of each genome,
which provide ``snapshots'' of the evolutionary
process.

The total number of folds (Nfolds) in the genome
at the end of a simulation is the sum of the initial
number of folds (N0) and the number of new folds
(rt) acquired during the course of evolution:

Nfolds � N0 � rt �1�
Next the total number of genes in the ®nal genome
(Ngenes) is the sum of the initial number of genes
(N0), the number of new folds acquired (rt) and the
number of duplicated genes (t):

Ngenes � N0 � rt� t �2�
Finally, Ngenes and Nfolds can be linked by the aver-
age level of fold duplication, i.e. the average fold
occurrence (C) in the genome:

C � Ngenes

Nfolds
� N0 � rt� t

N0 � rt
� Nfolds � t

Nfolds
�3�

By rearrangement, we obtain the number of dupli-
cation events t � (C ÿ 1)Nfolds and the relationship
between N0 and r:

r � Nfolds ÿN0

�Cÿ 1�Nfolds
�4�

For each genome, we obtain C by dividing the
number of genes that have structural assignments
with the number of folds that have been assigned:

C � Nassigned
genes =N

assigned
folds �5�

We then estimate the total number of folds in the
genome, including those yet to be assigned, by
dividing the total number of genes with C, i.e.
Nfolds � Ngenes/C. In calculating this value, we
assume that the distribution of folds among the
structurally assigned genes is equal for unassigned
genes, i.e. that they too follow a power law, and
we apply the same value of C across the whole
genome. By doing this, we suggest that most of the
folds encoded by these remaining genes occur very
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few times, with a small possibility that some may
occur many times. This is a realistic assumption, as
in fact, homology studies of the unassigned genes
indicate that a signi®cant fraction has no, or very
few related genes within the genome.23 Wolf et al.24

have previously used a more complex method to
obtain Nfolds, in which they counted the number of
protein families in a genome, and then extrapo-
lated this number to estimate the population of
folds. Despite the differences in procedures, the
estimates for Nfolds are similar to ours. Finally, hav-
ing obtained values for C and Nfolds, only N0 in
equation (4) needs to be adjusted for an optimal ®t
between the model and actual data.

The model versus the genomes

In Figure 4, we present the results of our
simulations compared to the distributions of four
representative genomes, including the smallest
Mycoplasma genitalium and largest Caenorhabditis
elegans in the dataset. (Plots for the remaining 16
organisms are available from the supplementary
website (Supplementary Material)). Here the geno-
mic data do not give smooth lines because they
comprise single population samples rather than
averages. Nevertheless, we highlight the remark-
able resemblance between the modeled and
observed distributions, including the varying gra-
dients for different organisms. The ®ts are particu-
larly good for low fold occurrences; our
predictions for the numbers of folds with fewer
than ®ve copies fall within 5 % of the actual data.
The plots for Archaeoglobus fulgidus, Mycobacterium
tuberculosis and M. genitalium (Figure 4(b)-(d)) clo-
Figure 4. The actual and simulated distributions for
(a) C. elegans, (b) A. fulgidus, (c) M. tuberculosis and (d)
M. genitalium. In each, the actual fold occurrences are
represented by points (&) and the average distributions
for 500 simulations are depicted by continuous lines.
sely follow the power law throughout. However,
the distribution for C. elegans diverges from a
straight line for fold occurrences above 10
(Figure 4(a)), an observation we also make for
S. cerevisiae.

Discussion

The parameter values we used for the 20 organ-
isms are summarized in Table 1. The average
occurrence of folds (C) ranges 2.4-31.6 and indi-
cates that there is a higher level of duplication in
larger genomes. This a simple re¯ection of the
observation that higher organisms have more para-
logous genes that provide a fuller spectrum of
related, but modi®ed protein functions.

The number of folds (Nfolds) spans 200-613 and
though the trend is less marked, also increases
with genome size. Our ®gures are in broad agree-
ment with the predictions provided of Wolf et al.24

and we note that none of the genomes exceed the
estimates for the universal population of folds.25,26

Previous work have extensively analyzed the
degree to which the most common folds are con-
served across different genomes.10,11,15,27 These stu-
dies found that many of the largest folds and
families are conserved across closely related gen-
omes, although their precise occurrences differ.
Clearly, this stems from both the evolutionary
relationship, and functional requirements that such
organisms share. For example in M. genitalium and
Mycoplasma pneumoniae, the ferrodoxin-like fold
dominates. In the eukaryotic S. cerevisiae and C. ele-
gans, the protein-kinase and a-a superhelix folds
are common. Although our current model only
simulates the development of individual genomes,
each simulation follows the evolution of a single
genome from the root of the phylogenetic tree to
the branch (Figure 1(d)). If we believe that organ-
isms originate from a common ancestor, then sep-
arate genomes would have undergone the same
evolutionary process before diverging. Therefore,
the protein families that grew during this stage of
evolution would be large for all organisms con-
cerned, whereas families that grew after diver-
gence would only be prominent in a few genomes.
Without this common ancestry we would not
observe the same level of conservation of the lar-
gest fold families in different genomes.

Of greatest interest are t, r, and the free par-
ameter N0. First considering t, ranging 280-13,727,
we ®nd that larger genomes have experienced
more duplication events than smaller ones and
re¯ect the variations in fold occurrences. Whereas
the real time between successive generations may
differ between organisms, it leads to the logical
conclusion that complex genomes such as C. ele-
gans experienced much longer development times
before becoming full organisms, than simpler gen-
omes such as E. coli.

Next we turn to the rate of fold acquisition; here
we consider the reciprocal of r, which gives the
number of duplication events that must occur for



Table 1. The parameter values that are used for the 20 organisms, listed from the smallest genome to the largest

Organism
No. of genes

(Ngenes)

Average fold
occurrence

(C)
No. of folds

(Nfolds)

No. of
generations

(t)
Initial no. of

folds (N0)
Rate of fold
transfer (r)

Generations
per transfer

(1/r)

Mycoplasma genitalium 481 2.4 200 280 20 0.64 1.6
Mycoplasma pneumoniae 688 2.5 275 413 20 0.62 1.6
Rickettsia prowazekii 834 2.6 321 514 40 0.55 1.8
Chlamydia trachomatis 894 2.6 344 550 60 0.52 1.9
Treponema pallidum 1031 2.8 368 662 30 0.51 2.0
Chlamydia pneumoniae 1052 2.7 390 662 60 0.5 2.0
Aquifex aeolicus 1522 4.3 354 1180 100 0.21 4.8
Helicobacter pylori 1553 3.3 470 1081 40 0.4 2.5
Borrelia burgdorferi 1638 2.9 565 1074 120 0.41 2.4
Haemophilus influenzae 1709 3.7 462 1249 90 0.3 3.3
Methanococcus jannaschii 1715 4.8 357 1357 70 0.21 4.8
Methanobacterium thermoautotrophicum 1869 5 374 1495 80 0.2 5.0
Pyrococcus horikoshii 2064 4.6 449 1616 70 0.24 4.2
Archaeoglobus fulgidus 2420 5.8 417 2001 90 0.16 5.3
Synechocystis sp. 3169 5.7 556 2613 110 0.17 5.9
Mycobacterium tuberculosis 3918 8 490 3426 160 0.096 10.4
Bacillus subtilis 4100 7 586 3447 190 0.12 8.3
Escherichia coli 4289 7 613 3605 170 0.12 8.3
Saccharomyces cerevisiae 6269 10.9 575 5693 200 0.066 15.1
Caenorhabditis elegans 19,099 31.6 604 18,482 280 0.018 55.6
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each acquisition. Here we emphasise that this par-
ameter gives the average rate of fold acquisition
for the entire course of the simulation, and rates at
particular time-points most likely vary during
evolution. Like t, there is a wide spread of values,
from 1.6 to 83.3 and fold acquisitions are more fre-
quent in smaller genomes. New folds are mainly
introduced from two sources: the intra-genomic
creation of a new fold and lateral transfer of exist-
ing folds from other organisms. Although the
model does not distinguish between the two, given
the high rates, we expect the latter to account for
most acquisition events. This is further supported
by the view that lateral transfer is more prevalent
in prokaryotes than eukaryotes,28 ± 33 and we
observe that the rate of fold acquisition is lowest in
S. cerevisiae and C. elegans. Using the model, we
calculate that about 30 % of the E. coli genes are
descended from acquisitions; this provides a crude
estimate for the maximum number of genes intro-
duced through lateral transfer, and compares to
the 18 % of genes that have been introduced since
the organism's divergence from the Salmonella
lineage.28

Finally we look at N0, which ranges 20-280, and
like the other parameters has a tendency to
increase with genome size. In this study we have
assumed that there is only one of each type of fold
in the starting genome. Although we might expect
some folds to be present in several copies, further
extensions to the model indicate that the initial dis-
tribution does not greatly affect the ®nal power-
law distribution (M. Kamal et al., unpublished
results). In addition, even if there were multiple
copies of some folds, given their small starting
sizes of the genomes, the difference between the
most and least common folds would be very small,
i.e. some folds occurring three or four times at
most. Therefore, the starting state we use is a good
approximation.

Although N0 is a free parameter, its value is
effectively ®xed by the current appearance of each
genome. So as a natural outcome of our model, it
is worth discussing the evolutionary implications.
However, as the origin of modern organisms
remains a ®ercely debated subject, we must treat
this matter with care. For the sake of argument,
suppose that N0 corresponds to the size of the gen-
ome that emerged out of the progenotic entitie.34.
Then, if all organisms originated from a common
ancestor, the variation in N0 requires consideration.
So far, we have included gene loss as a factor
during the expansive stage of evolution. However,
it is also a major effect after the genome has
reached its maximum size. Commonly termed
reductive evolution, this is almost certainly respon-
sible for the subsequent contraction of many bac-
terial genomes. A detailed investigation into
Haemophilus in¯uenzae and E. coli showed that their
last common ancestor is likely to have been at least
as large as the latter.35 Similar studies of other obli-
gate parasites Mycoplasma, Mycobacterium, Rickett-
sia, Chlamydia and Buchnera indicate that the effect
has been equally acute in these genomes.36 ± 38 So
given the reduced genomes, we inevitably under-
estimate their initial sizes. On the other hand, there
is so far little evidence that E. coli, S. cerevisiae and
C. elegans have undergone such radical changes
and their current genomes could be near their
maximum sizes. Therefore, as our simulation more
accurately models the evolution of these organ-
isms, their N0 values suggest that the universal
ancestral genome contained 170-280 folds and by
default, genes. In a plot against Ngenes, N0 appears
to converge to about 300 (Supplementary
Material), thus setting a ceiling for the initial
genome sizes of organisms that are larger than
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C. elegans. We also note that these numbers are
similar to the size of the minimal gene set pre-
dicted by Mushegian & Koonin.39 Simulations for
the most recently sequenced Drosophila melanoga-
ster, Arabidopsis thaliana, and Homo sapiens are work
in progress, and their N0 values will be of great
interest.

We examined two further models for evolution
after the organisms reached their maximum sizes.
Both of these involve a larger amount of gene loss
than the expansive model we focussed on above.
For reductive evolution, we started with a simu-
lated genome resembling E. coli, and removed
genes randomly until it was the size of the smaller
bacteria. For steady-state evolution where genomes
maintain the maximum sizes, random gene dupli-
cations and losses were made at the same rate. In
both cases, the power-law distributions remain
intact.

The last main point for discussion is whether the
probability of fold duplication should depend only
on its current occurrence. Clearly, there are further
factors that could contribute. For instance, some
genes are located where genomes recombine more
rapidly,40 and folds with high occurrence tend to
have more symmetric structures, as seen in lattice
models.41 Above all, selective pressure in the dupli-
cation and deletion of particular genes is perhaps
the most dominant factor. However, tests of differ-
ent ``usefulness'' functions that modify the prob-
abilities of fold duplication had little effect on the
outcome of the simulation. This is reinforced by
the observation that folds with high occurrences in
yeast are not necessarily associated with many
functions.42,43 For example, the highest-ranking
fold, the seven-bladed b-propeller occurs 140
times, but is so far only linked with two distinct
functions. Therefore, selective pressure is probably
the single most important factor in determining the
fate of individual genes, and our results clearly do
not apply to the exact occurrence of an individual
fold. Nevertheless, we demonstrate that the power-
law distributions seen at a genomic scale, across
many different organisms, result from an under-
lying stochastic process of evolution involving ran-
dom duplications and an overall acquisition of
folds.

Conclusion

In conclusion, this paper has demonstrated that
the occurrence of protein folds, superfamilies, and
families in genomes follow a power-law distri-
bution. At ®rst glance this may appear to be noth-
ing more than a mathematical curiosity. However,
the behaviour summarizes an important feature in
biology that a few members often dictate the over-
all appearance of a population, in this case, that
most genes in a genome encode one a few fold
types. By designing a minimal, but biologically rea-
listic model, we showed that such a distribution
stems from how these organisms evolved. Further-
more, it allows us to estimate the rate at which
different genomes have acquired new folds, and
speculate on the size of the universal common
ancestor. As the current state of the genomes pro-
vides only a snapshot in evolutionary time, these
values are hard to obtain by other methods. In lim-
iting the complexity of the model, we have ident-
i®ed the essential components of evolution that
produce the power-law behaviour: gene dupli-
cation and ¯ow. We anticipate future studies to
incorporate further parameters for factors such as
gene deletion and selective pressure to build a
more biologically exact model. However, initial
analyses suggest that such factors are most import-
ant at the level of individual proteins, families or
folds, rather than at a genomic level.
Acknowledgments

We thank Sarah Teichmann, Paul Harrison, Roman
Laskowski, Annabel Todd, Ronald Jansen and Jimmy
Lin for helpful discussions during preparation of the
manuscript. N.M.L. is supported by a Cancer Bioinfor-
matics Fellowship from the Anna Fuller Fund and M.G.
acknowledges support from the Keck Foundation.

References

1. Zipf, G. K. (1949). Human Behaviour and the Principle
of Least Effort, Addison-Wesley, Cambridge, MA.

2. Mandelbrot, B. B. (1953). Symposium on Applications
of Communications Theory, London.

3. Wasserman, S. & Faust, K. (1994). Social Network
Analysis, Cambridge University Press, Cambridge.

4. Members of the Clever project. (1999). Hypersearch-
ing the Web. Sci. Am. 280, 54-60.

5. Albert, R., Jeong, H. & Barabasi, A. L. (1999). Inter-
net: diameter of the World-Wide Web. Nature, 401,
130-131.

6. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. &
Barabasi, A. L. (2000). The large-scale organization
of metabolic networks. Nature, 407, 651-654.

7. Park, J., Lappe, M. & Teichmann, S. A. (2001). Map-
ping protein family interactions: intramolecular and
intermolecular protein family interaction repertoires
in the PDB and yeast. J. Mol. Biol. 307, 929-938.

8. Barabasi, A. L. & Albert, R. (1999). Emergence of
scaling in random networks. Science, 286, 509-512.

9. Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L.,
Havlin, S., Peng, C., Simons, M. & Stanley, H. E.
(1994). Linguistic features of noncoding DNA
sequences. Phys. Rev. Letters, 73, 3169-3172.

10. Gerstein, M. (1997). A structural census of genomes:
comparing bacterial, eukaryotic, and archaeal
genomes in terms of protein structure. J. Mol. Biol.
274, 562-576.

11. Huynen, M. A. & van Nimwegen, E. (1998). The
frequency distribution of gene family sizes in com-
plete genomes. Mol. Biol. Evol. 15, 583-589.

12. Lo Conte, L., Ailey, B., Hubbard, T. J., Brenner, S. E.,
Murzin, A. G. & Chothia, C. (2000). SCOP: a struc-
tural classi®cation of proteins database. Nucl. Acids
Res. 28, 257-259.

13. Apweiler, R., Attwood, T. K., Bairoch, A., Bateman,
A., Birney, E., Biswas, M. et al. (2001). The InterPro



Power-law Behaviour and Evolutionary Model 681
database, an integrated documentation resource for
protein families, domains and functional sites. Nucl.
Acids Res. 29, 37-40.

14. Apweiler, R., Biswas, M., Fleischmann, W., Kanapin,
A., Karavidopoulou, Y., Kersey, P. et al. (2001). Pro-
teome Analysis Database: online application of
InterPro and CluSTr for the functional classi®cation
of proteins in whole genomes. Nucl. Acids Res. 29,
44-48.

15. Gerstein, M. (1998). Patterns of protein-fold usage in
eight microbial genomes: a comprehensive structural
census. Proteins: Struct. Funct. Genet. 33, 518-534.

16. Teichmann, S. A., Park, J. & Chothia, C. (1998).
Structural assignments to the Mycoplasma genita-
lium proteins show extensive gene duplications and
domain rearrangements. Proc. Natl Acad. Sci. USA,
95, 14658-14663.

17. Wolf, Y. I., Brenner, S. E., Bash, P. A. & Koonin,
E. V. (1999). Distribution of protein folds in the
three superkingdoms of life. Genome Res. 9, 17-26.

18. Gerstein, M. (1998). How representative are the
known structures of the proteins in a complete gen-
ome? A comprehensive structural census. Fold. Des.
3, 497-512.

19. Lesk, A. M. & Chothia, C. (1980). How different
amino acid sequences determine similar protein
structures: the structure and evolutionary dynamics
of the globins. J. Mol. Biol. 136, 225-270.

20. Orengo, C. A., Flores, T. P., Taylor, W. R. &
Thornton, J. M. (1993). Identi®cation and classi®-
cation of protein fold families. Protein Eng. 6, 485-
500.

21. Holm, L. & Sander, C. (1997). Dali/FSSP classi®-
cation of three-dimensional protein folds. Nucl. Acids
Res. 25, 231-234.

22. Levitt, M. & Gerstein, M. (1998). A uni®ed statistical
framework for sequence comparison and structure
comparison. Proc. Natl Acad. Sci. USA, 95, 5913-5920.

23. Vitkup, D., Melamud, E., Moult, J. & Sander, C.
(2001). Completeness in structural genomics. Nature
Struct. Biol. 8, 559-566.

24. Wolf, Y. I., Grishin, N. V. & Koonin, E. V. (2000).
Estimating the number of protein folds and families
from complete genome data. J. Mol. Biol. 299, 897-
905.

25. Chothia, C. (1992). Proteins. One thousand families
for the molecular biologist. Nature, 357, 543-544.

26. Orengo, C. A., Jones, D. T. & Thornton, J. M. (1994).
Protein superfamilies and domain superfolds.
Nature, 372, 631-634.

27. Lin, J. & Gerstein, M. (2000). Whole-genome trees
based on the occurrence of folds and orthologs:
implications for comparing genomes on different
levels. Genome Res. 10, 808-818.

28. Lawrence, J. G. & Ochman, H. (1998). Molecular
archaeology of the Escherichia coli genome. Proc. Natl
Acad. Sci. USA, 95, 9413-9417.

29. Doolittle, W. F. (1999). Phylogenetic classi®cation
and the universal tree. Science, 284, 2124-2129.

30. Ochman, H., Lawrence, J. G. & Groisman, E. A.
(2000). Lateral gene transfer and the nature of bac-
terial innovation. Nature, 405, 299-304.

31. Kidwell, M. G. (1993). Lateral transfer in natural
populations of eukaryotes. Annu. Rev. Genet. 27,
235-256.

32. Doolittle, W. F. (1998). You are what you eat: a gene
transfer ratchet could account for bacterial genes in
eukaryotic nuclear genomes. Trends Genet. 14, 307-
311.

33. de la Cruz, I. & Davies, I. (2000). Horizontal gene
transfer and the origin of species: lessons from
bacteria. Trends Microbiol. 8, 128-133.

34. Woese, C. R. (2000). Interpreting the universal
phylogenetic tree. Proc. Natl Acad. Sci. USA, 97,
8392-8396.

35. de Rosa, R. & Labedan, B. (1998). The evolutionary
relationships between the two bacteria Escherichia
coli and Haemophilus in¯uenzae and their putative
last common ancestor. Mol. Biol. Evol. 15, 17-27.

36. Andersson, S. G. & Kurland, C. G. (1998). Reductive
evolution of resident genomes. Trends Microbiol. 6,
263-268.

37. Andersson, J. O. & Andersson, S. G. (1999). Insights
into the evolutionary process of genome degra-
dation. Curr. Opin. Genet. Dev. 9, 664-671.

38. Andersson, S. G., Zomorodipour, A., Andersson,
J. O., Sicheritz-Ponten, T., Alsmark, U. C. &
Podowski, R. M., et al. (1998). The genome sequence
of Rickettsia prowazekii and the origin of mitochon-
dria. Nature, 396, 133-140.

39. Mushegian, A. R. & Koonin, E. V. (1996). A minimal
gene set for cellular life derived by comparison of
complete bacterial genomes. Proc. Natl Acad. Sci.
USA, 93, 10268-10273.

40. Barnes, T. M., Kohara, Y., Coulson, A. & Hekimi, S.
(1995). Meiotic recombination, noncoding DNA and
genomic organization in Caenorhabditis elegans.
Genetics, 141, 159-179.

41. Li, H., Helling, R., Tang, C. & Wingreen, N. (1996).
Emergence of preferred structures in a simple model
of protein folding. Science, 273, 666-669.

42. Hegyi, H. & Gerstein, M. (1999). The relationship
between protein structure and function: a compre-
hensive survey with application to the yeast gen-
ome. J. Mol. Biol. 288, 147-164.

43. Todd, A. E., Orengo, C. A. & Thornton, J. M. (2001).
Evolution of function in protein superfamilies, from
a structural perspective. J. Mol. Biol. 307, 1113-1143.

44. Altschul, S. F., Madden, T. L., Schaffer, A. A.,
Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.
(1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs.
Nucl. Acids Res. 25, 3389-3402.
Edited by J. Thornton
(Received 1 June 2001; received in revised form 9 Sep-
tember 2001; accepted 10 September 2001)

http://www.academicpress.com/jmb

Supplementary Material is available on IDEAL


