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Abstract

Motivation: Global surveys of protein folds in genomes measure the usage of es-
sential molecular parts in different organisms. In a recent survey, we showed that the
occurrence of protein folds in 20 completely sequence genomes follow a power-law dis-
tribution; i.e. the number of folds (F) with a given genomic occurrence (V) decays
as F(V) = aV~? with a few occurring many times and most occurring infrequently.
Clearly, such a distribution results from the way in which genomes have evolved into
their current states.

Results: Here we develop and discuss a minimal, analytically tractable model to
explain these observations. In particular, we demonstrate that (i) stochastic gene du-
plication and (ii) overall acquisition of new folds are sufficient to accurately replicate
the power-law distributions. Furthermore by optimizing the model using genomic data,
we gain a quantitative insight into otherwise unattainable data. In particular, as the
rate at which genomes acquire new folds is directly related to the power-law exponent
-b, we can easily estimate this rate by measuring the gradient of the distribution on
a log-log graph.In addition, extensions to the model suggest that gene deletion and
selective pressure are important to the fate of individual genes, but do not significantly
affect the final power-law distribution. That is, although gene deletion and selective
pressure will affect the choice of the most common fold type in an organism, it will not
change the overall power-law distribution found across different genomes. Finally, we
gain an indication of the initial sizes of genomes, from the starting states of the simu-
lations. We find that the power-law dependence of the fold distribution is independent
of the composition of the starting genome.

Availability: Additional data pertaining to this work is found at
http://www.partslist.org/powerlaw

1 Introduction

The power-law behavior is frequently found in many different population distributions.
Also referred to as Zipf’s law, a well-documented example is the usage of words in text
documents (Zipf, 1949). By grouping words that have similar occurrences, it was noted
that a small selection such as ”the” and ”of” are used many times, while most occur
infrequently. When the size of each group is plot against its usage, the distribution is
described by a power-law function: the number of words (F) with a given occurrence
(V) decays with the equation F = a/V®. The distribution is linear when plot on log-log
axes, where -b describes the slope. Such distributions are also found for the relative
sizes of cities, income levels and the number of papers published by scientists in a field
of research (Zipf, 1949).

Significantly, the power-law behavior is also prevalent in many aspects of genomic
biology (Luscombe et al., submitted). It is found in the usage of short nucleotide
sequences (Mantegna et al., 1994; Konopka & Martindale, 1996; Israeloff et al., 1995;
Bonhoeffer et al., 1996; Voss et al., 1996), the populations of gene families (Gerstein,
1997; Huynen & van Nimwegen, 1998), the occurrence of protein superfamilies and
folds in genomes (Koonin et al., 2000; Qian et al., 2001) and several biological networks
(Jeong et al., 2000; Park et al., 2001; Rzhetsky and Gomez, 2001). The distribution
extends even further to the number of distinct protein functions associated with a
particular fold, the number of protein-protein interactions that are made by each fold
type, and the variations in expression levels between genes present in the yeast genome.
These observations have been made in at least 20 prokaryotic and eukaryotic genomes,
and so are likely to be universal to most other genomes that are yet to be analyzed.
Given the prevalence of this behavior, we suggest that all of these biological distributions



arise because of a common mechanism for genomic evolution, primarily by duplicating
existing genes to increase the presence of particular types of proteins (Qian et al., 2001).

The current study focuses on the distribution of protein folds in different organisms
(Figure 1). Most proteins encoded in a genome have a defined three-dimensional struc-
ture that can be classified into distinct protein folds. Although these folds are defined
by the topology of the peptide chain, it is possible to determine whether two proteins
adopt the same fold by sequence comparison. So even if structures are unavailable for
all the genes, we can classify them into equivalent folds by sequence similarity. Using
these classifications, one way of representing the contents of a genome is to count the
number of times different folds occur and then group together those with similar oc-
currences (Figure 1). Like word usage, the number of folds (F) with a certain genomic
occurrence (V) decays according to the power-law function; we display the distribution
for the E. coli genome in Figure 1, and plots for 19 further organisms is available from
our supplementary website.

There have been several efforts to understand this nonuniform distribution of protein
families. A number of models suggested that the observation of non-uniform population
distributions of protein families depends on the ”designability” of the protein structure;
that is, the relative size of a family depends on the fraction of all sequences that could
successfully fold into any particular protein fold (Taverna 2000, Shakhnovich 1998).
Others have modelled the occurrence of non-uniform distributions by simulating the
evolution of genomes. In the model of Huynen and van Nimwegen (1998), families
expand or shrink in size through successive multiplications by a random factor, which
represents duplication or deletion events depending on its value. More recently, Yanai et
al. (2000) introduced a model in which a genome evolves from a set of precursor genes to
a mature size by iterative gene duplications and gradual accumulation of modifications
through point mutations. When an individual family member acquires enough random
mutations, it breaks away to form a new family.

We recently presented an equally minimal, but more biologically realistic model
(Qian et al., 2001). Here genomes evolve through stochastic gene duplications and
steady acquisition of new protein folds, either by ab initio creation or horizontal gene
transfer (Lawrence & Ochman, 1998; Doolittle, 1999; Ochman et al., 2000; Kidwell,
1993; Doolittle, 1993; de la Cruz & Davies, 2000). Simulations replicated the genomic
distributions very accurately, and provided insight into the rate at which different or-
ganisms acquired new folds and the origins of a common ancestral genome. Although
our work focused on the distribution of protein fold populations, the model applied
equally well for other gene classifications such as sequence families, and SCOP super-
families (Lo Conte, 2000).

The purpose of the current work is two-fold. First, we propose new models based on
our previous model by fully incorporating two additional processes in evolution: gene
deletion and selective pressure. These major biological processes were beyond the scope
of our previous work, and are likely to affect the outcome of our evolutionary model.
Second, we provide full analytical and numerical analyses of the original model and its
extensions; in doing so we explore the mathematical and biological significance of the
model, and explore the relative effects that the different evolutionary processes (gene
duplication, acquisition, deletion and selective pressure) have on the final appearance
of different genomes. In the previous paper, our results are only based on simulations.
In contrast, the analytical approach is also employed in this work.



2 Minimal Model: Gene Duplication and New Fold
Acquisition

Suppose that the initial genome consists of Ny distinct folds at time ¢ = 0, i.e. the
number of genes equal the number of folds. The growth of the genome in our model
occurs by randomly duplicating existing genes, and by incorporating new folds into the
genome at a constant rate. Both of these processes are assumed to operate indepen-
dently and continually over time. We assume that at every instant, all genes are equally
likely to be chosen for duplication and that on average, one duplication event happens
per unit time. As a result, large folds, i.e. ones that are coded by many genes, are more
likely to grow over time than smaller folds. We assume that R new folds of size 1 are
always incorporated in to the genome per unit time, i.e. the acquisition of new folds is
not stochastic.

Let F(m,t) be the expected number of folds of a given size m at time ¢. The fold
histogram determines both the expected total number of distinct folds F'(t) and the
expected total number of genes G(t):

F(t)= > F(m,t)
o (1)
G(t) = Z mE(m,t)

Under these growth assumptions, the Markovian dynamics governing F'(m,t) are given
by:

OF(m,t) _ (m—-1)F(m—1t) mF(m,1)

a 0 ey m>1 )
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Although duplication occurs at the gene level, it is more convenient mathematically to
work directly with the fold histogram F'(m, ).

The intuition behind these equations is as follows. If the gene selected for duplication
that originally is a member of a fold of size m — 1, then after duplication that fold will
now be a fold of size m, and the population of F(m — 1,¢) and F(m,t), will decrease

and increase, respectively, by one. The probability for this particular gene selection is
(m—1)F(m—1,t)
G(t)
These equations ensure the appropriate expected growth rates for the total number

of folds. A direct summation of (2) leads to:

OF(t) 0
ot = o 2 P

=R

3)

and hence: F(t) = No + Rt. Similar manipulations show that the expect number of
genes also grows as required: G(t) = Ny + (R + 1)t. It is important to note that evolu-
tion equations enforce the correct overall normalization for the histogram; there is no
need to impose normalization conditions separately.

The complete analytical solution for the coupled equations (2) can be found by
standard methods. As the calculations are straightforward, but tedious, full details are
left to Appendix A.



The biological interpretation of the analytical solution is best appreciated by exam-
ining two important limiting cases. If there is no acquisition of new genes (R = 0), the
solution simplifies considerably:

F(m,t) = No¢p ' (1—¢ )" (4)
where ¢(t) relates the passage of time to the expected number of genes:

G(t) _,, R+

#(t) = Fpt = 1+ 5= %)

Therefore, gene duplication alone leads to an exponential distribution of fold occurrence:
log F(m,t) =mlog (1 —¢~") +¢(t) , with ¢(¢) independent of m.

The other revealing limit concerns the behavior for large times (¢ — oc) when new
genes are acquired at a nonzero rate (R # 0). The asymptotic limit is given by:

(R+ 1)t

F(m,t) = Amd(t) = Am <1 +
0

> as t — oo (6)

with coefficients A,, that depend only on R and Ny, and not on time:

RNy 'y
Am T R+2

(7)

=

i R+2+z

Consequently, the probability distribution of fold sizes, i.e. the normalized histogram,
is determined by solely by the A,,

F(m,t) Am R+1'%
pm 0= 2 s~ mee U e ®)

i=1

and furthermore this asymptotic probability distribution depends only on R — the
dependence on initial cluster size Ny is removed by the normalization.
An examination of the the leading large m behavior of A,, reveals that

log Ap, ~ —(R+2)logm 9)

Therefore, for large m, the terminal probability distribution (8) resembles a power-law
with exponent R + 2. For small m, the coefficients decrease less rapidly with m and
do not resemble power-law dependence. This observation is relevant for estimating R
from empirical data or even numerical results.

It is also worth pointing that a power-law distribution that decays too slowly will
lead to an infinite expected number of genes. A power-law distribution will that holds
asymptotically for large m: N(m) ~ 1/m® has to be described by an exponent @ > 2 for
the sum G(t) = >.° mN(m) to converge. The asymptotic limit of the exact solution,
a power-law with exponent R + 2, satisfies this condition.

For nonzero R and times other than zero and infinity, the fold distribution will not
be strictly exponential, nor will it conform to the limiting distribution (8). For small
times, the analytic solution confirms what would be expected intuitively: the histogram
behavior is dominated by duplication events involving the initial Ny genes. To char-
acterize the “crossover” behavior of the solution from the exponential to approximate
power-law regime we have calculated the similarity of the exact probability distribution
at different times to both the best fitting exponential distribution and to the limiting
asymptotic distribution (8). The difference between any two probability distributions
is measured by the sum of squared differences (the standard L? metric).



We have characterized the crossover time T, for a range of values for both R and Ny
and find that the crossover time displays two distinct regimes. Within each regime it is
approximately inversely proportional to R and directly proportional Ng: T, ~ Ng/R,
with a different proportionality constant for each regime. Details of this analysis can
be found in Appendix B. The numerical results indicate that crossover occurs roughly
when the number of new fold introductions: RT., becomes comparable to the initial
genome size Ny, as might be expected intuitively.

| THE PLOT |

Figure 1: Fold distribution for E. coli

| THE PLOT |

Figure 2: Three Models: (a) Minimal, (b) Gene deletion and (c) Selective pressure



So far, we have assumed that the starting genome contains just one copy of each fold.
In fact, it is reasonable to expect the initial genome to have several copies of particular
fold types (for example those involved in protein synthesis) when the evolutionary
process described by the model was initiated. By definition, genomes in our model
have a comparatively small starting state, and so the difference between the most and
least common folds would be minimal, i.e. some occurring three or four times at most.
However, it is nonetheless of interest to investigate the effect that the appearance of
the initial genome would have on the final distribution.

The solution we have derived for a particular initial genomic configuration — Ny dis-
tinct folds consisting of one gene — can be extended to describe the evolution of an arbi-
trary initial fold distribution Nj,;(m) that is made up of Ny genes: > = mNi,i(m) =
Ny. The solution is similar to the special initial condition of Ny distinct folds and is
presented in detail in Appendix C.

One important conclusion may be drawn from the generalized model: all initial
distributions ultimately lead to the the same limiting distribution determined by the
A,,. Just as before, the dependence on the initial fold distribution N;,i:(m) decays
with time, leading to the same asymptotic distribution as was found for an initial
distribution of Ny folds of size 1 in (9), reflecting the dominance of fold introduction
over gene duplication for large times. Of course, the details of how and when the
crossover happens will depend on the particular form of Ny, (m).

3 Extended Model: Including the Effects of Random
Gene Deletion

Gene deletion is a major factor in evolution and is discussed in detail by Qian et al.
(2001). In this section we incorporate an additional parameter, Q, that represents gene
deletion.

The most natural extension of (2) that accounts for allows random gene deletion at
rate ) would be the following:

OF(m,t) (m—-1)F(m-1,t) mF(m,t) (m+1)F(m+1,t) mF(m,t)

ot a0 “Tap ¢ el0) =G m>Y
OF(L,1) F(l,t)  F(2,1)
R G e ry i ey
(10)

The terms proportional to ) encode the dynamics for gene deletion, which are very
similar to gene duplication: on average, ) deletions occur for every duplication event
and the gene to be deleted is chosen randomly from all the genes in the genome. In
this way the population of a given bin m can either decrease due to gene deletion if the
gene to be deleted is from bin m itself, or it can increase as a result of a deletion in the
neighboring bin m + 1.

In this extended model, gene growth occurs at the uniform rate one would expect:
G(t) = No + (1 + R — Q)t. In contrast, the behavior of the expected number of folds
is more complicated:

OF(t) 8
_ F(1,t)
_R_Qam



Folds of size 1 that are deleted disappear from the genome so F'(t) depends explicitly
on the population of F(1,¢); unlike the @ = 0 case, the dynamics of F(t) can not be
determined without knowing the full solution to (10).

The extended is much more complicated mathematically, primarily because the
difference equations are now second order. In the duplication/acquisition model, the
behavior of larger folds depends only on the behavior of smaller folds, so the full solution
can be constructed inductively starting from the solution for m = 1. With gene deletion
operating as well, the dynamics of different fold sizes are coupled together. In many
respects, these dynamics are like those describing diffusion phenomena; when @ = 0
the genome exhibits growth due to drift, or directed movement alone, while nonzero @
introduces diffusive, or non-directional movement as well.

3.1 Analytic Results

We were able to derive a full analytical solution only in the absence of any new fold
introduction: R = 0. In this case, only stochastic gene deletion and duplication operate.
We will restrict our discussion to when gene duplication occurs at a higher rate than
gene deletion, which requires 0 < @ < 1, so the genome will still grow in size, at least
in terms of number of genes: G(t) = Ng + (1 — Q)t. Note that since R = 0, equation
(11) shows that the number of folds will actually decrease with time. Losing folds while
gaining genes is possible if the larger folds make up for the loss of genes from smaller
folds.

An analytic solution exists for an initial distribution of Ny different folds of size 1
and is worked out in detail in Appendix D. Once again, the distribution is exponential.
Figure 3 shows histograms F'(m,t) corresponding to three values of @) and a fixed time.

Remarkably, the normalized distribution of fold size (the probability distribution)
is independent of the gene deletion rate Q:

_ F(m,t)

_Z?il F(ivt)

B NO ¢ m—1
T Ny+t|Ng+t

p(m, 1)
(12)

Hence gene deletion does not affect the shape of the distribution at all when R = 0,
only the overall normalization is changed. This can also be seen directly from Figure
3.

Although an exact analytical solution does not seem possible for arbitrary R and
@, it is nonetheless possible to derive analytic expressions for the higher moments of
the fold distribution. Appendix E discusses how this is done and particular, includes
an expression for the second moment that will prove useful when fitting the model to
genomic data.

3.2 Numerical Results for Nonzero R and @) <1

Numerical solution of (10) reveals for that large times, the normalized histograms of
fold size approach a time-invariant limit that depends solely on R and Q. Figure 4(a)
shows the probability distributions for a fixed rate of new fold acquisition, R = 1.0,
and increasing rates of gene deletion: @ = 0,0.2,0.4,0.6. The power-law character of
the distributions is retained even for large values of ). Quite reasonably, higher rates
of gene deletion encourages the dominance of smaller folds, leading to a more rapid
decline of p(m) with fold size m. Common folds require repeated gene duplication and
an avoidance of gene deletion events to proliferate. As the probability of avoidance is
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Figure 3: Fold histogram F'(m,t) for Ny = 100 and ¢ = 1000 plotted for @ = 0,0.4,0.8 and
R = 0. Note that logF(m,t) is plotted against m to highlight the exponential dependence.

proportional to 1 — @), the probability of multiple avoidance is suppressed as a power
of 1 — Q.

Figure 5(a) explores the effect of deletion when the overall gene growth rate is kept
constant: 1+ R — @ = 1.6. In this way, we can contrast the effects of deletion and
fold acquisition in a controlled manner. Note that a commensurate increase in R does
not overcome an increase in @, as large folds are suppressed more than small folds.
This means that the exponent that best describes the power-law decay is not merely a
function of of R — Q.

On the other hand, the effect of gene deletion is not dramatic; not only is similarity
to a power-law retained the actual change in exponent is not large. Even for fold of large
size, there isn’t much difference between the curves even for a fairly large gene deletion
rate. In practice, this makes it difficult to estimate @) statistically from the shape
of fold histograms derived empirically from genomic data. While the effective gene
introduction rate: 1+ R — @, should be easy to deduce from the data, an identification
of @ itself from the rate of decay would require reliable occurrence data for very large
folds.

When there is no gene deletion, the expected number of folds increases linearly with
time at rate R. Equation (41) suggests gene deletion will lead to a less simple time
dependence for F(t). Perhaps surprisingly, F(t) remains, to a good approximation,
linear in time, with a slope that is no longer R, as can be seen in the numerical results
of Figure 4(b). Here F(t) is plotted for fixed R = 1.0 and different values of the gene
deletion rate: @ = 0.0,0.2,0.4,0.6. In fact, the slope in each of these cases is less than
R and decreases with @), which is consistent with the analytic solution for F'(t) when
R =0, derived derived in Appendix D ( see equation (41).

If again we choose parameters that fix the growth rate for the expected number
of genes (1 + R — @), a commensurate increase in both R and @ leads to a greater
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Figure 4: (a) Normalized large-time limiting fold distribution and (b) the total number of
folds as a function of time when R = 1.0 and @ = 0,0.2,0.4,0.6. Logarithm of p(m) is
plotted against logarithm of m

increase in the expected number of folds, as can be seen in Figure 5(b). This is entirely
reasonable: in our model, the new folds that are continually acquired at rate R are all
distinct, so a genome with large R and @) will end up with many small folds, each coded
by only a few genes. In contrast, a genome with small R and @ will lead to fewer but
larger folds.

3.3 Analytic Approximation Based on Perturbation Theory

The numerical results show that gene deletion, even for fairly large values of ) does not
dramatically change the growth pattern of the genome, certainly qualitatively and to
some extent, even quantitatively. Moreover, the analytic results from section 3.1 showed
that gene deletion is remarkably benign: in the absence of new gene acquisition, but with
gene duplication operating, gene deletion does not change the probability distribution
of fold occurrences, but does change expected total number of folds in the genome.

This suggests that it should be possible to capture the effects of gene deletion
perturbatively by constructing an approximation around the @ = 0, R > 0 solution as
an expansion in powers of ). The perturbation expansion has to be handled carefully
since a naive expansion, one that considers contributions only up to some finite power
of @, will not converge for all fold sizes m. The failure of conventional perturbation
theory is explored in Appendix F.

To go beyond naive perturbation theory, we have adopted the following approach:
(1) the dominant contribution at every order (or power) of @ is identified, (2) the
dominant contribution is approximated, and (3) the resulting new infinite series in @
is summed exactly to arrive at an approximate solution that remains finite for all @
and m. The details are presented in Appendix F. Although not rigorous, this type of
rescue or augmentation of perturbation theory is practiced routinely and often quite
successfully on a variety physical models, such as models of phase transitions from
statistical physics (Itzykson, 1989).

This approach leads to the following approximation for the limiting fold distribution:

m—1

R+1+QR i
m = , 13
P R+2+QR£[1R+2+QR+z (13)
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Figure 5: (a) Normalized large-time fold distribution and (b) the total number of folds as
a function of time for fixed overall gene growth: 1+ R —Q = 1.6 and ¢ = 0,0.2,0.3,0.4.
Logarithm of p(m) is plotted against logarithm of m

Note that the approximation includes as a special case the exact distribution derived
previously for @ = 0 (8). In fact, the approximate distribution for ) nonzero is obtained
from the exact solution for ) = 0 by the substituting R — R+@QR. This correspondence
also makes it clear that for large m, the @) # 0 probability distribution will resemble a
power law with exponent R+Q R+2, just as ¢ = 0 distribution approached a power-law
with exponent R + 2.

The true test of the effectiveness of the approximation rests with a comparison to
the numerical results, which is done in Figure 6. There seems to be good qualitative
agreement, and fairly good quantitative agreement as well, even for Q = 0.4. As
expected from the nature of the approximation, there is better agreement for large m
in all cases. An approximation for the expected number of folds F'(¢) within the same
framework is given in Appendix F.

4 The Effects of Selection Pressure

Selective pressure plays an important role in the evolution. It is well known that
different genes have different duplication rate due to the selective pressure (Patthy,
1999). So far we have assumed that when genes are duplicated, or deleted, the target
gene is chosen with equal probability from all the genes in the genome. A more realistic
model would of course allow for favoritism in the selection process: presumably, genes
that are useful or necessary are less likely to be deleted and perhaps more likely to be
duplicated than genes that are less important. Note, however, that our model is not a
differential survival model.

We explore the effects of selection pressure by extending the minimal model to
allow for different duplication rates among genes. Suppose now that genes are not
only identified with particular folds but also by their duplication types. For simplicity,
assume that there are only two types: type “A” and type “B”, and that “B” genes are
~ times more likely to be chosen for duplication than “A” genes. There will still be
one duplication event, on average, per unit time, so the total expected number of genes
will remain the same, but the allocation of the total between types “B” and “A” will
depend on vy. We will assume that v > 1, so it is the “B” types that are more likely to
be duplicated.

11
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Figure 6: Analytic approximation, shown using solid lines, for normalized terminal fold
distribution, compared to the numerical results of Figure 4.

To keep track of the fold population we now need two histograms: F4(m,t) and
Fg(m,t) to distinguish between the duplication types. The full fold histogram is the
sum of both sub-histograms: F(m,t) = Fa(m,t) + Fp(m,t). Similarly, let G4(t) and
Gp(t) represent the total number of genes for each type and define a new variable

G, (t):
Gy (1) = Ga(t) +1GB(1) (14)
The evolution equations that extend (2) are:

OFs(m,t) _ (m—1)Fa(m—1,t) mFa(m,t)

o G0 G, Y
8F,4(1,t) _ _ FA(I,t)
a T a0 15)
0Fp(m,t)  (m—1)Fg(m —1,t) mFg(m,t)
B =T am T anm ™Y
OFs(Lt) _ , _ Fa(l1)
ot P G, (1)

Note that we allow new folds to be acquired at different rates for each type: R4 can be
different from Rp although we will restrict our numerical examples to the when they
are equal.

The equations for the total number of genes of both types follow from the full dy-
namics (68) and are given in Appendix (G). These confirm that the overall duplication
rate is still one gene per unit time.

Once again, analytical solutions are possible for the two special parameter values
addressed previously: (1) when there is no introduction of new folds, so R4 = Rg = 0;

12



and (2) the limiting distribution when ¢ — co. When there is no introduction of new
folds, a simple extension of the methodology employed in Appendix A establishes that
the each of the sub-histograms F4(m,t) and Fg(m,t) follows an exponential distribu-
tion for all times. The full histogram is consequently a sum of exponential distributions:

Fy(m,t) + Fg(m,t)

t) =
Pmt) = S E ) + Fa(int)
N64 u m—1 NB m—1
= _ 9  _eoTU|[] e + 0 oYU U 16
NE+NEC [t-e™] N§ + N§ [t=e] (16)

The number of distinct folds of each type, present at ¢t = 0 is given by Ng' and NZ.
The variable u(t) is a rescaled time variable related to G, (t); the exact form of the
dependence appears in Appendix G but is unimportant for the present discussion.

Of greater interest is the other special case: the ultimate evolutionary fate of the
genome. The analytic behavior for large times is much easier to derive than an exact
solution itself. For large t, G, (t) will grow linearly with time: G, ~ C,t, according to
a constant C, that depends on the rate of fold acquisition and the differential rate of
duplication (see Appendix G for details).

In a similar fashion, we define coefficients C/4 and C2, akin to the coefficients A,,
of the solution to the minimal model (8), that describe the ultimate linear growth
of the histogram bins: F4(m,t) ~ C/At, and similarly for Fg(m,t). The normalized
probability distribution corresponding to this limit is given by:

cay+cB
_ c, R ml:[l 1 N c, Rp mﬁl iy
CV+1RA+RB i Cr\,-l-z'-l-l Cv-l-’}/RA-l-RB paiey CA,+7(2'+1)

(17)

The important conclusion to be drawn from (17) is that powerlaw-like distributions
describe the ultimate fate of the genome even when there are different rates of gene
duplication. The probability distribution is the sum of two powerlaw-like distributions,
each similar to the powerlaw-like distributions of the minimal model, but characterized
by its own effective exponent. Figure 7 shows a comparison of the predicted distribution
and numerical results when R4 = Rp = 0.5 for v = 1, which is corresponds to the
minimal model, and v = 10, so type “B” genes are ten times more likely to be selected
for duplication. The two distributions are remarkably close to each other, even when
there is an order of magnitude difference between the relative duplication rates of type
“B” genes. We have found that the parameter 7 has much less of an effect than
differences between the gene introduction rates R4 and Rp.

We have also briefly considered the case of more than two duplication types. When
there is no introduction of new folds into the genome equation (16) generalizes: the sub-
histogram for each duplication type is exponential. Furthermore, we have confirmed
numerically that the terminal distribution is not dramatically affected by selection
pressure, even when there are several families with significantly different rates of dupli-
cation. One particular example, involving four duplication types appears in Appendix
G.

5 Fitting the Models to Genomic Data

Clearly, of greatest interest is to observe how our model compares with the genomic
distributions. We start with the minimal model, for which we require estimates for the
parameters t, Ny and R for each organism.

13



4|» ' ' ' I I I Nulmerical l.(l) +
. Numerical 10.0
S Analytic 1.0 --------
2L T Analytic 10.0 i
4 + Lk R
e
o
X %_#

6} ‘+~\+4 i
E g
=% K
o s
o +++

8 *br_&_ 4

R
&5

210 F

-12

_14 1 1 1 1 1 1 1 1 1

0 0.5 1 15 2 25 3 35 4 45
log m

Figure 7: Large time limit for the fold probability distribution for v = 1 and v = 10.
Numerical results are plotted as symbols; analytic results from Equation (17) as lines

Fitting the minimal model requires estimating three parameters: ¢, Ny and R. We
have determined these parameters separately for each organism by insisting that the
minimal model match the number of folds: F', the number of genes: G, and the second
moment of the actual fold histogram: Hs, to those predicted by the minimal model.
The fitting procedure is greatly simplified by the linear relation that exists between the
variables (No,t) and (F,G):

No = (R+1)F — RG
t=G-F (18)

The estimation of R is aided by recasting the expression for Hy (Eq. 47 in Appendix
E) so that ¢ no longer appears explicitly. Instead, the second moment can be expressed
so that it depends directly on F', G and the unknown R:

1-R

Hy, R+1 2 o

G R-1 R-1

G
F
R+1-R%

(19)

This equation is well behaved and can be easily solved numerically. What threatened to
be a coupled, nonlinear three dimensional estimation problem is actually nothing more
than a single nonlinear equation and two linear equations. We have verified that this
fitting procedure accurately recovers parameters values from distributions generated
both numerically and from the exact solution.

The results appear in Table 1. As a measure of the quality of the fit, we also
report the mismatch of between the third moment predicted by the minimal model and
observed in the data, as a percentage of the observed value; a positive value indicates
that the model moment is larger. Plots of the actual fits appear in Figure 8.
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Genome Genes | Folds | G/F t Ny R Mismatch of

third moment (%)
M. genitalium 481 200 | 2.40 | 281 7 0.69 9.9
M. pneumonia 688 277 | 249 | 411 15 | 0.637 3.6
R. prowazeki 834 322 | 2.59 | 512 26 | 0.576 -13.1
C. trachomatis 894 344 | 2.60 | 550 29 | 0.574 -8.0
T. pallidum 1031 367 | 2.81 | 664 31 | 0.505 -14.1
C. pnemoniae 1052 390 | 2.70 | 662 34 | 0.538 -10.2
A. aeolicus 1522 357 | 4.26 | 1165 | 68 | 0.249 -3.0
H. pylori 1553 477 | 3.26 | 1076 | 52 | 0.395 0.6
B. burgdorferi 1638 559 | 2.93 | 1079 | 13 | 0.506 4.5
H. influenzae 1709 457 | 3.74 | 1252 | 70 | 0.31 0.9
M. jannaschii 1715 358 | 4.79 | 1357 | 34 | 0.239 3.8
M. thermoautotrophicum | 1869 374 | 5.00 | 1495 | 35 | 0.227 -10.5
P. horikoshii 2064 450 | 4.59 | 1614 | 91 | 0.223 -5.7
A. fulgidus 2420 419 | 5.78 | 2001 | 72 | 0.173 -3.2
Synechocystis sp. 3169 558 | 5.68 | 2611 | 108 | 0.172 0.3
M. tuberculosis 3918 491 | 7.98 | 3427 | 118 | 0.109 -2.2
B. subtilis 4100 584 | 7.02 | 3516 | 153 | 0.123 -12.4
E. coli 4289 610 | 7.04 | 3679 | 141 | 0.127 -5.2
S. cerevisiae 6269 575 | 10.9 | 5694 | 128 | 0.078 2.8
C. elegans 19099 | 605 | 31.6 | 18494 | 120 | 0.026 -18.4

Table 1: Fit of the minimal model using genomic data from 20 organisms

The parameter values are in fact very similar to those obtained in our previous

work. The mismatch values range -13.1% to 9.9% and indicate that the distributions
resulting from our model closely resembles the genomic distribution.

Our attempts to fit the models that included gene deletion were not that informative.
This is partly because, as we have seen already, the gene deletion parameter () does
not have a dramatic effect on the shape of the distribution. We had difficulties even
trying to fit distributions generated numerically from the extended model. Unlike the
equations describing the minimal model, these coupled equations are also nonlinear.
Furthermore, since there is no exact analytic expression for F'(t), one of the variables
itself has to be calculated numerically (We found that our analytic approximation for
the number of folds given in Appendix F was not accurate enough to carry out the
root-finding). We have found that naive multidimensional root-finding algorithm are
either unable to distinguish between many approximate solutions, or find no solution
at all at with increased sensitivity. The same difficulties were encountered in trying to
discern evidence for selection pressure — there was too little dependence on the selection
parameter 7 to allow reliable estimation.

6 Conclusions

Here we propose two new models based on our previous model by fully incorporating
two major processes in evolution: gene deletion and selective pressure. Both mathe-
matically and biologically, including these effects are not slight. Mathematically, the
derivations clearly show they are not trivial. Biologically, these effects provide a much
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Figure 8: Minimal model fits for (a) C. elegans, (b) A. fulgidus, (c) M. tuberculosis and
(d) M. genitalium using parameters from Table 1

more realistic model for genomic evolution than has been presented in any previous
publications (Huynen and van Nimwegen, Yanai et al. Qian et al). Furthermore, we
provide analytical and numerical analyses of the original model and its extensions to ex-
plore the mathematical and biological significance of the models and to demonstrate the
effects that the different evolutionary processes (gene duplication, acquisition, deletion
and selective pressure) have on the final appearance of different genomes.

The field of the power-law distributions is controversial (Mantegna et al. 1994;
Gerstein 1997; Huynen and van Nimwegen 1998; Jeong et al. 2000; Koonin et al. 2000;
Park et al. 2001; Konopka and Martindale 1995; Bonhoeffer et al. 1996b; Bonhoeffer et
al. 1996a; Israeloff et al. 1996; Martindale and Konopka 1996; Voss 1996). A number
of fitting functions other than the power law were proposed to explain the observation
(Govindarajan 1999, Martindale 1996). Our argument is that the question of which
fitting function is the best should not be the central problem, because one can always
find a function with more parameters fits the observation better than others (Luscombe
et al., submitted). Instead, we think biologically meaningful models are more helpful
for understanding the origin of distribution and the analytical and numerical solutions
shown in this work are vital for explaining the observation and further predicting the
behaviour of the system.

The full analytical solution to this basic model revealed new facts that were unattain-
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able from simulations only. As observed previously, gene duplication alone gives rise
to an exponential distribution. However, the combined effect of duplication and acqui-
sition changes the nature of genomic growth dramatically; beyond a sufficient length
of evolutionary time, the fold distribution undergoes a transition from the exponential
form, to a time-invariant limiting distribution that resembles a power law. The rate of
fold acquisition (R) and the size of the initial genome (NO) have distinct effects. Firstly,
the cross-over time from the exponential to power-law phases is proportional to NO and
approximately inversely proportional to R. This implies that the transition occurs when
the number of new fold acquired becomes comparable to the initial size of the genome.
Secondly, the decay rate of the power-law distribution i.e. the slope on a log-log plot
is equal to R + 2 for large fold sizes. In fact, the final appearance of the distribution
is independent of NO, and is unaffected by the nature of the fold distribution in the
starting genome. We find that the decay rate of the power-law distribution i.e. the
slope on a log-log plot is equal to R + 2 for large fold sizes.

Note that we take R as a constant, and we regard this as the average rate of fold
acquisition throughout the entire course of evolution. In reality, the value of R is likely to
vary with time owing to a number of factors such as the decrease of available new protein
folds. Further effects might be the increasing difficulty in horizontally transferring genes
as the organism becomes more complex. These effects would generally lead to a decrease
in rate of fold acquisition with time and this is perhaps reflected in the lower values of
R for larger genomes.

We also studied extended models that fully incorporate the effects of random gene
deletion and selective pressure. Gene deletion, represented by the parameter Q, does
not significantly alter the qualitative behaviour found in the minimal model. The
analytic solution showed that when there is no fold acquisition (R = 0), the distribution
is again exponential and surprisingly, completely independent of Q. For cases where
there is fold acquisition (R ¢ 0), gene deletion had two main effects: firstly the final
genome contained fewer fold types, and secondly all fold groups had smaller occurrences.
Unsurprisingly, the extent of these effects was dependent on the size of Q. The final
distribution nonetheless remains close to a power law, with a decay rate of R + 2 +
QR.

The effects of selective pressure were incorporated into the minimal model by intro-
ducing favouritism into the gene selection process. This was done by having two groups
of genes, one with a higher probability of selection than the other. In this case, the
two sets of genes effectively evolve with two distributions, each undergoing a transition
from the exponential to power-law phases. Therefore, the final fold distribution is the
sum of two power-law distributions, which in fact still closely resembles the distribution
when no selective pressure is present. This is true even for large differences in dupli-
cation probabilities between the two sets of genes. More generally, we could imagine
an array of finer differences in duplication probabilities representing the full range of
selection pressures for genes of distinct biological functions. For this, we conjecture
that selective pressure, at least when modelled as a duplication bias, will lead to folds
that co-exist and compete for prominence in the genome, each undergoing separate,
but linked distributional transformation.

We compared our minimal model compares with the genomic data by fitting pa-
rameter values. Figure 13 and the mismatch values in Table 1 show, the fits between
the model and genomic data are good. As discussed in our earlier work, the parameters
can be interpreted in a biologically meaningful way (Qian et al., 2001). We did not use
the new models for simulating biological data for two reasons: (1) they do not greatly
affect the final appearance of the distribution; (2) if we would be trying to fit a model
with three additional free parameters, this would detract from the main results of the

paper.
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In conclusion, although our model considers a few of the many important processes
underlying evolution, it is significant that a simplistic model based on gene duplication
and fold acquisition leads to distributions close to those observed in genomic data. The
current genomes provide only a snapshot in evolutionary time, but through our model,
we gain a glimpse into the biological processes that are most important. Furthermore,
by estimating parameter values, we obtain quantitative estimates such as the rate of
gene acquisition, which would be otherwise unattainable. Interesting expansions to our
model in future may include allowing parameter values to vary during the course of evo-
lution, and modelling the evolution of different genomes simultaneously and simulating
their divergence into different organisms.
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A Appendix: Analytic Solution of the Minimal Model

It helps to introduce a new parameterization of time:

1)t
u = log ¢(t) = log (1 LB ) (20)
No
with associated derivative:
0 R+10
Z - 21
ot Noe Ou (21)

With this definition, © = 0 corresponds to ¢t = 0.
This new variable helps rid the differential equations (2) of explicit time dependence:

OF(m,u) mF(m,u) (m—1)F(m —1,u)

- 1
ou R+l R+1 (m > 1) 22
OF(1,u) +F(1,u) _ NoR

du R+1 R+1°

19



Note that the equation the special bin F'(1,u) does not depend on any other F'(m,u),
so it can be solved separately. Once it is known, the solution for any other m can be
found by successive integration:

+1

F(m+1,u):exp< Tl >/ R+1 m,v)exp<g+1v> form+1=2,3,---

(23)

The solution for m serves as a “source” for m+1. The relation (23) follows by multiply-

m+1
R+1

that F(m > 1,t = 0) = 0, so the initial conditions are automatically satisfied. Our
method of solving the differential equation is elementary and standard, see (Simmons,
1994) for more details.

The solution for m = 1 can be found in the same way:

ing both sides of (2) by exp ( u) and integrating. Note that this solution ensures

0 Uu B u NoR
du [exp <R—+1>F(L“>} = oxp <R+ i +“) R4l (24)

_ u NoR U
F(l,u)—Noexp< 1+r> +R+2 [expu exp( 1+r>] (25)

The full solution follows by successive application of (23). There are two types of
integrals that come up:

ex —m—Hu f_dv [m exp v] ex m—“v
PURT1Y) Sy R+ MOPOEP R
m m+1
= - - 2
R+2+m[eXpu eXp( R+1u>] (26)
- m+4n+1 /“ dv (m +n)
<P R+1 ) ), Ry
_mw . v " m+n+1
P\ "R P\ R 1 P\ Ry1 Y
mu u e
- 1-— - 2
p( R+1>< eXp( R+1>> ] @

The coefficients that emerge from these integrations define the recursion relations
for A,, and 8):

_m+n
T on+1

m

Api1 = ———A, 2
T RY2+m (28)
m o m+n .

The full solution to (2), taking into account the initial conditions, is given by:

)ﬂ

m—

Pl =N (157 780)" a5 5 At e (1)

[y

RN, 5 _ pa DOmD(R +2)

A, = -
R+2 R+2+z "T(R+2+m)

n

m+k—1 (m+n—1)!
:H k - (m —1)In!

k=1
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with the understanding that an empty product is unity, i.e. H?:l ft)=1.
Note that the coefficients A,, and §]7* do not depend on time, and furthermore
has no dependence on R or Ny. The product of coefficients A;3}, _, can be simplified:

(m —1)!

A; :.nfi = -
g (m — i) T2 (R+2+j)

(31)

but it will be useful keep these these coefficients separate when considering the solution
for more general initial conditions. Note that we use the standard definition for the
gamma function I'(z); see Appendix H.

log p(m)

-10

-12 +

-14 ' '

log m

Figure 9: The normalized A,, coefficients (points) and a power-law fit (line), shown as a
log-log plot as a function of size m, for R = 1.

B Appendix: Crossover Behavior

For nonzero R and times other than zero and infinity, the fold distribution will not
be strictly exponential, nor will it conform to the limiting distribution (8). For small
times, we would intuitively expect the histogram to be dominated by duplication events
involving the initial Ny genes. This is confirmed by the behavior of the analytic solution
for small ¢:
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From this approximation, it is clear that the terms involving Ny dominate for small
times. Consequently, the fold distribution will resemble an exponential distribution
more than the limiting distribution early on in the evolution of the genome. It is also
clear that the histogram F(m,t) will not approach the limiting distribution uniformly;
the rate of convergence will depend on cluster size.

There are many possible ways of characterizing this transformation of the fold dis-
tribution, each suggesting a different notion of a “‘crossover” time. We have looked at
the convergence of the probability distribution as a whole. To quantify the extent to
to which the actual distribution p(m) resembles a second distribution, say pa(m), we
adopt the sum of the squared differences as our metric:

na =Yy (p(m) —pa(m))’ (33)

m

S pm) = palm) =1 (34)

Figure 10 tracks the evolution of p(m) according to this metric when R = 1.0 and
No = 100. At each time, the closeness of p(m) to the limiting distribution (8) is
shown, as is the closeness to the best fitting exponential distribution for that time,
obtained by a least-squares regression of logp against m. For times greater than ¢ = 70,
the distribution of fold sizes resembles the final distribution more than any exponential
distribution, this defines the crossover time for this set of parameters. The sum extends
to cluster sizes large enough to ensure numerical convergence.

Figure 11 plots the crossover time as a function of R for two values of Ny. The
range of R is chosen so that new fold acquisitions occur less frequently than (or as
often as) gene duplication. The crossover time displays two distinct regimes. Within
each regime it is approximately inversely proportional to R and directly proportional
No. A different proportionality constant applies in each regime: T, ~ Ng/R. These
numerical results confirm that crossover occurs roughly when the number of new fold
introductions: RT, becomes comparable to the initial genome size Ny. The details of
the dependence are not that important, as they are no doubt strongly affected by the
choice of metric.

C Appendix: Arbitraty Initial Distribution

The solution for an arbitrary initial distribution: Ny, (m), requires solving (22) subject
to different boundary conditions at ¢ = 0; the terms proportional to A,, are the same,
the term proportional to Ny is replaced by the superposition of new terms describing
the propagation of each bin of initial histogram:

o] m—1
F(m,t) = Niit(i)s(m, 1) + A(¢ — ¢7T87) = > Apy(m, 1)
=1 =1

35
0 ifm<i (35)

Yilm:1) = 4 ¢ THE (1—¢’1J%R)m_i for m >

m—1

with the same definitions for A,, and 3] as before. These are derived by following by
successive integration in the same way as was done in Appendix A.

The fact that 1;(m,t) = 0 for m < i reflects the fact that there is no gene deletion;
genes that start in bin ¢ may either stay put or advance to bins corresponding to larger
fold sizes, but will never populate bins of fold size less than 1.
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Figure 10: Crossover from exponential to large-time limiting distribution for R = 1.0 and
Ny = 100.

One important conclusion may be drawn from the full solution: all initial distribu-
tions ultimately lead to the the same limiting distribution determined by the A,,. Just
as before, the dependence on the initial fold distribution N;,;(m) decays with time,
leading to the same asymptotic distribution as was found for an initial distribution of
Np folds of size 1 in (9). Of course, the details of how the crossover happens will depend
on the particular form of Njp:(m).

D Appendix: Solution to the Extended Model When
0<@®Q<land R=0

As one done in the solution for the minimal model, define ¢(t):

(1-Q)t

o) =1+ %

; (36)

and keep the association: u = log¢(t). In terms of the time-like variable u, the funda-
mental evolution equations (10) now are:

OF (m,u)

(1- Q)T =(m—-1)F(m-1,t)— (1+Q)mF(m,t) + Q(m +1)F(m + 1,u) (m>1)
(1- @2 — (14 Q)R + QPR

(37)

Substituting the ansatz: F(m,u) = f(u)g™ *(u) into the equation for m > 1 leads
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Figure 11

: Crossover time for Ny = 100 and Ny = 50, plotted as a function of (a) R, and
(b) 1/R.

to the following relation:

Since

These
and g(

In fact,

01 0
(1-0) |28 gt m -2 | = m

— 1)+ (1+Q)mg + Q(m +1)g* (38)
neither g(u) nor f(u) depend on m, this identity can only be satisfied if:
dg

(1-Q)7 =1-(1+Q)g+Qg’
dlog f (39)
(1-Q) 5 =—-(1+Q)+2Qg

equations can be solved by integration, together with the restriction that f(¢t = 0) =1
t =0) = 0. It is easy to verify that the ansatz also works when m = 1.

F(m,t) = Nof(t)g™ (1)

e 1-Q 12 No 12
106" (2o ~o |
B 1— ¢71 _ t (40)
90 = 1057 = Nt 1
_, -y
o) =1+ A
it is easy to solve for F'(¢) in this special case:
or(t) _ F(Lt) _ f@®)
a - “Gn T %0 (41)

which can be integrated directly:

The large-time asymptotic limit for F'(¢) is

Ft) = Ny Yot 1 = @)t jv(():@t (42)

(1 — Q) Ny folds, which reflects the fact

that some of the initial Ny folds will ultimately be lost due to gene deletion.
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Equation (42) leads to a simple relation between the number of folds and the number
of genes:

Ft) = —<0

~ 1+1t/No (43)

Although F'(t) and G(t) both depend on @, their ratio does not.

The solution (40) we have derived for 0 < @ < 1 is also the solution for @ = 1,
which means that gene deletion and duplication occur at the same rate. Equations
(42) and (43) for the total number of folds F'(t) are still valid for @ = 1, but now the
expected number of genes is constant: G(t) = Ny. Although we will not do so here,
analytic solutions can be derived when deletion dominates duplication so the genome
shrinks in size.

E Appendix: Analytical Results for Higher Moments

Higher moments of the distribution, defined as H,(t) = >, m"F(m,t), for n > 2 in
the extended model statisfy the following differential equation:

0H,

G(t) T

=RG(t)+ Y F(m) [m(m+1)" - (1+Q)m"™ + Q(m —1)"m]  (44)

In particular, the equations for the second and third moment are:

OH,

(1) = RO(1) +2(1 = Q) Ha () + (1+ Q)G() (45)
G(t)% = RG(1) +3(1 - Q)Hs(t) + 3(1+ Q)3H:(t) + (1 - Q)G(t)  (46)

Higher moments depend on all lower moments except for the zeroth moment, the ex-
pected number of folds F'(¢) This is fortuitous, since equation 11 for F(t) could not be
solved analytically due to its explicit dependence on the population of smallest folds:
F(1,t).

The solution for the second moment is given by:

Ny exp (fj_lg_cgu(t)) + Ng% [exp u(t) — exp (fj_lg_cgu(t))] R#1-0Q
No exp (u(t)) [1 + %] R=1-4Q

H(t) =

where the variable u(t) is related to the expected number of genes:

(R+1—Q)t}

u(t) = log [1 + N

This result will be important in fitting actual genomic data to the models.

F Appendix: Perturbation Theory Approximation
for the Extended Model
As before, relate time and the number of genes through ¢(t):

B+1-Q)t

Blt) =1+

25



This extends the previous definition (5); the variable u keep is still defined as before
(20): u = log ¢(t).

Recall that when @ = 0 and R > 0 the long-term behavior of F(m,t) is determined
by the coefficients A,,, as shown in equation (6). Assume that the large-time solution
in the presence of gene deletion is determined by new coefficients B,,:

F(m,t) = Bn¢(t) = Bpexp (u) as t — o0 (50)
Substituting this ansatz into the fundamental equations (10) leads to:

(1+R—Q)By =RNg— (14+Q)B1 +2QB>

(1+4R-Q)By,=(m—1)By_1 — (14+ Q)mB,, + Q(m + 1)Bp,41 (1)

Motivated by the numerical results, we will develop the perturbation around a new
variable 7,,:
By = YmAm (52)

that relates B,, to the = 0 solution (4,,) as closely as possible. Using the explicit
form of A,, from (30) in (51) leads to:

2
m (R+2)(R+3)
(53)
. 40 (1—m) L0 m(m + 1)
Ym = Ym—1 R+1l+m '™ R+1+m)(R+2+m) ™!

It is easy to see that when Q = 0, 7,,, = 1, which means B,,, = A,, for all m.
The perturbation theory approach expands -, for each m as a power series in @):

o0

Ym =Y QY (54)

i=0

From the solution when ) = 0 we immediately know the first term in the expansion:
77(,(1]) = 1. The remaining terms are determined order-by-order by substituting into (53)

and collecting terms with the same power of Q:

(i) _q 2 (i-1)
M T RTE+3) "
(55)
NORNGI (1-m) A=) m(m +1) A
meme L P Ry 1+ m ™ (R+1+m)(R+2+m) ™t

The first-order (i = 1) equations are easy to solve since the the zeroth-order solutions
are just unity:

M _q 2
g T RY(E+3)
3D =D+ 3 gl0) (56)
=2
(i) = 2+2R+R* 2+3R+ R’
N = T TR+ 24+ R+

(The function g(i) comes from simplifying the addition of the fractions multiplying

i) and 4,77 in (36) ).
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An important limitation of the perturbation expansion is revealed by the first order
solution. Consider the behavior of the sum:

gjg(n ~ [ drgta

(57)
m+R+1 m+R+2
=(2+2R+R*)log————— — (2+ 3R+ R*)log ————
@+ 2R+ 1) log =gy — (24 3R + B log ==y
For large m, the sum increases in magnitude logarithmically with m:
m
> " g(i) ~ —Rlogm (58)
i=2

This means that no matter how small @ is, for large enough m the first order
expansion will fail. This reflects a limitation of the perturbation expansion itself for
this problem — stopping the expansion at any finite order will lead to a series valid only
up to some maximum size m.

The only way to obtain a consistent expansion is to sum all orders of the series.
Unfortunately, the equations (55) are difficult to solve exactly, and even if they were
possible to solve, it would be even more difficult to carry out the summation. However,
it isn’t difficult to figure out the dominant contribution at each order. It helps to first
look at the equations for i = 2:

m(m + 1)

@) = 4 ol 1
" L +g(m )gg(ZH(R+1+m)(R+2+m)g(m+ )
i m ) (59)
+1
NG -
” +Zg ;g 2 R+1+z R+2+i)g(z+ )

The first summation dominates the second in the above equation; the first grows like
log® m, while the second grows like m logm.

The same pattern emerges at all orders — the dominant contribution can be isolated
as:

) m J1 Ji-1
3D~ 3 96 D 9Ga) D gGi)
j1=2 Jjoa=2 ji=1
i (60)

N'71 Zg

The sum of the dominant contributions remains finite:
~exp [Q Zg ~ exp (—QRlogm) (61)

and suggests that for large m, v, will decay as a power-law with exponent QR.

Motivated by this observation, and recalling that for large m, A,, ~ 1/mf*? (from
equation (9)), we suggest the following approximation for B,,, valid for all values of m,
not just when m is large:

RN, ! i
B =C 0 62
R+2+QRZ,1;[1R+2+QR+1' (62)
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where C' is a constant that is independent of m. The above expression for B, is
derived by replacing R by R + QR in the denominator of the product that defines
Ay, (Equation (30)) This is really nothing more than informed guesswork; this is the
simplest expression for B,, that recovers a power-law with exponent R + QR for large
m and reduces to A, when @ = 0.

In order to determine F'(t), the total number of folds at time ¢, equation (11) has
to be solved using the approximate solution (62). First, the a choice has to be made
for the constant C' — since the equation is an approximation, there is freedom in the
choice. One way is to enforce the consistency of equation (56) for m = 1:

B _ ., R+2 2

= =1
4 CRi240R - T R+2(E+3)

:>C:<l+m> (”%)

As F(t) is directly affected by By, it is natural to focus on m = 1. Note that for small
Q. Cm1+2/(R+2)(R+3).
Equation (11) can be integrated to give an approximation for F(t):

F(t)~ No + R (1 - RQ—f2> t (64)

=
(63)

Using the identity of Appendix H, the normalized coefficients are given by:

m—1

By, R+1+4+QR i
DPm = 59 = . (65)
> m—1Bm R+2+QRZ];[1R+2+QR+’L
Fi)y=No+R(1--2% )
R+2 (66)

c=(1+ 1+ 5 on)

m)( R+2+QR

In the presence of gene deletion, the approximation for F(t) shows linear growth
with time at a rate less than R. As expected, a greater rate of gene deletion re-
duces the growth of F'(¢t). However the approximation predicts that the number of
folds will always increase with time, which can be verified by taking the uppermost
limit, @ = 1. For small @, the constant C itself can be approximated more simply:
C~1+4+2/(R+2)(R+3).

Figure 12 confirms these observations. The approximation for the expected number
of folds seems to work quite well and could be useful in trying to infer both R and @
from genomic data. Certainly the impact of gene deletion is easier to identify through
F(t) and G(t) than through the shape of the histogram F(m,t).

G Appendix: The Effects of Selection Pressure

Recall that we have assumed that there are only two duplication types: type “A” and
type “B”, and that “B” genes are y times more likely to be chosen for duplication than
“A” genes. There will still be one duplication event, on average, per unit time, so the
total expected number of genes will remain the same, but the allocation of the total
between types “B” and “A” will depend on . We will assume that v > 1, so it is the
“B” types that are more likely to be duplicated.
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Figure 12: Analytic approximation for the total number of folds compared to numerical
results of Figure 4.

To keep track of the fold population we now need two histograms: F4(m,t) and
Fg(m,t) to distinguish between the duplication types. The full fold histogram is the
sum of both sub-histograms: F(m,t) = Fa(m,t) + Fp(m,t). Similarly, let G4(t) and
Gp(t) represent the total number of genes for each type and define a new variable

G, (t):
G,(t) = Ga(t) +1Gp(t) (67)
The evolution equations that extend (2) are:
OFA(m,t) _ (m—1)Fa(m —1,t) mFx(m,t)
o G Gon 7Y
OFA(1,1) _R Fa(1,t)
ot AT TG0 (©8)
OFg(m,t) _ (m-—1)Fg(m—1,¢t) mFg(m.1) (m > 1)
o N0 N0
0Fp(1,t) R B(l,t)
ae PTG

Note that we allow new folds to be acquired at different rates for each type: R4 can be
different from Rp although we will restrict our numerical examples to the when they
are equal.

As before, we derive equations for the total number of genes from the full dynamics
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aGat) D B Ga(t)
ot ot mz::l mFa(m,t) = Ra+ Ga(t) +vGB(1)
8GB(t) 0 GB(t)
- — - —2\7 69
or ~ ot 2 "em 0 = Be g e (99
OG(t)  9GA(t)  Gp(t)
5 = a T g =RatRp+1

This confirms that the overall duplication rate is still one gene per unit time. The
evolution of G (t) is more complicated:

aG., (1) G(t)
ot G (1) }

It is possible to establish the distributional properties of the genome without having
to solve (70) explicitly for the special parameter values encountered previously: (1)
the case when there is no introduction of new folds, so R4 = Rp = 0; and (2) the
limiting distribution when ¢ — oc. When there is no introduction of new folds, a simple
extension of the repeated integration employed in Appendix A establishes that the each
of the sub-histograms F4(m,t) and Fg(m,t) follows an exponential distribution for all
times:

:RA+'yRB+1+'y[1— (70)

Fa(m, 1) = Ng* exp (—u(t)) [1 — exp (—u(®)]" "
Fp(m,t) = Ny’ exp (=yu(t) [1 — exp (—yu(t))]™

The number of distinct folds of each type, present at ¢ = 0 is given by N(;“ and NB.
The variable u(t) is determined by G (t)

GO e 72

The full histogram is consequently a sum of exponential distributions:

FA(m,t) +FB(m,t)

(71)

-1

t) =
Pt = S E G0 + Fait)
N(]A _ _ay1m—1 N(F _ _ m—1
— uwly u RA Iy - yu 73
N(;“+N(Fe [L-e] +N5“+Ng36 [L-e] (73)

The the large time behavior of the solution is much easier to derive than an exact
solution. For large t, G, (t) will grow linearly with time: G, ~ C,t, according to a
constant C., that depends on the rate of fold acquisition and the differential rate of
duplication:

1 1
Cy =5 (Ra+Rp+1+7) + 5V (Ra+9Rp +1+7) —4y(Ra+ Rp +1)  (74)

In a similar fashion, we define coefficients C:} and CE, akin to the coefficients A,
of the solution to the minimal model (30), that describe the ultimate linear growth
of the histogram bins: Fy4(m,t) ~ C/At, and similarly for Fg(m,t). The form of the

coefficients is very similar to the minimal model’s A4,,:

Ry et i
Cin =
™ O, 1 1;[1 Cy+i+1

. (75)

RB i'y
cr =
Oy +y ,1;[1 C,+~v(+1)
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The normalized probability distribution corresponding to this limit can be found using
the same normalization identity that was helpful in deriving the probability distribution
in the minimal model (Appendix H):

cA+CE
plm.1) = =65 CF
m—1
C, Ra H c,
C+1R,4+RBZ,:107+Z+1 C+’YRA+RBi:10fY+’Y 1)

(76)

We have also briefly considered the case of more than two duplication types. When
there is no introduction of new folds into the genome, the same argument behind
equations (71) and (16) generalizes: the sub-histogram for each duplication type is
exponential. Furthermore, we have confirmed numerically that the terminal distribution
is not dramatically affected by selection pressure, even when there are several families
with significantly different rates of duplication. One particular example, involving a
four duplication types appears in Figure (13). In this rather extreme case, types “B”,
“C” and “D” are 4.0, 8.0 and 16.0 times more likely to be duplicated than type “A”.
The total rate of new fold acquisition is the same for both genomes.

kS 1 typelz +

log p(m)
&
T
+
1

-10

12 Lo 1 1 1 1 1
0 0.5 1 1.5 2 25

logm

Figure 13: Large time limit for the fold probability distribution for the minimal model (one
duplication type) and four duplication types: v = 4,7¢ = 8,yp = 16. The total rate of
new fold acquisition is the same for both genomes.
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H Appendix: A Useful Normalization Identity

A series whose terms z,,, m = 1,2,--- are defined by a recursion relation:

=1 ! (77)

can be summed exactly as follows.
Rewrite z,, as:

_ T(m)T(a+1)

Fm = I'(a+m) (78)
with the usual definition for the gamma function:
o0
() = / dt 11t (79)
0

The integral representation of the beta function B(z,y) provides the key identity
to carry out the sum:

B(z,y) = % = /0 dtt*~ (1 — )yt (80)

Combining these relations leads to:

Z Zm = a/o Z tml (1 — et (81)
=a /1(1 — )2 (82)
0
- aa— 1 (83)
(84)

32





