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A Method Using Active-Site Sequence Conservation to Find
Functional Shifts in Protein Families: Application to the
Enzymes of Central Metabolism, Leading to the
Identification of an Anomalous Isocitrate

Dehydrogenase in Pathogens

Rajdeep Das and Mark Gerstein™

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut

ABSTRACT We have introduced a method to
identify functional shifts in protein families. Our
method is based on the calculation of an active-site
conservation ratio, which we call the “ASC ratio.”
For a structurally based alignment of a protein
family, this ratio is the average sequence similarity
of the active-site region compared to the full-length
protein. The active-site region is defined as all the
residues within a certain radius of the known func-
tionally important groups. Using our method, we
have analyzed enzymes of central metabolism from
a large number of genomes (35). We found that for
most of the enzymes, the active-site region is more
highly conserved than the full-length sequence. How-
ever, for three tricarboxylic acid (TCA)-cycle en-
zymes, active-site sequences are considerably more
diverged (than full-length ones). In particular, we
were able to identify in six pathogens a novel isocit-
rate dehydrogenase that has very low sequence
similarity around the active site. Detailed sequence-
structure analysis indicates that while the active-
site structure of isocitrate dehydrogenase is most
likely similar between pathogens and nonpathogens,
the unusual sequence divergence could result from an
extra domain added at the N-terminus. This domain
has a leucine-rich motif similar one in the Yersinia
pestis cytotoxin and may therefore confer additional
pathogenic functions. Proteins 2003;00:000-000.
© 2003 Wiley-Liss, Inc.

Key words: metabolic enzyme; genome; active site;
sequence variation

INTRODUCTION

With the completion of a large number of genome
sequences, a major problem for biology is functional anno-
tation on a genome scale—determining a function for all
the proteins encoded by a genome.!'? Unfortunately, it is
very hard to do large-scale functional annotation purely on
the basis of sequence.® Sequences diverge beyond the point
of obvious recognition in terms of functional and structural
homologues.*® Furthermore, divergence on the sequence
over its entire length has to do with many factors, and it is
hard to abstract the specific bit of divergence that relates

© 2003 WILEY-LISS, INC.

to functional conservation. This is where structure can
play a major role in guiding people to the functionally
important residues associated with the active site. Also
with the advent of structural genomics, we are now
confronted with the production of a large number of crystal
and NMR structures. It is very useful to use these struc-
tures in a systematic fashion to refine our understanding
of protein function. This is the overall aim of this work. We
tried to develop a method for assessing active-site se-
quence conservation in comparison to full-length conserva-
tion, and we applied this to a number of pathway enzymes
and achieved novel results.

Pathway enzymes have been a topic of wide scientific
interest in both the pre- and postgenomic eras. Studies
have focused on several aspects of pathway analyses.
Particularly in the postgenomic era, metabolic pathways
have been studied using sequence information. Such
genomic analyses of pathways have been performed in
many ways, and various metabolic databases have been
constructed.®~!! In contrast to overall sequence conserva-
tion, sequence variability of an enzyme near the functional
site may reflect a functional shift. This functional shift can
occur in many ways, such as a change in the binding
affinity of the substrate or intermediate.'? Previous stud-
ies analyzed protein families in terms of sequence—
structure relationships.® In this article, we have analyzed
a number of enzymes of the central metabolic pathways
[i.e., glycolysis, pentose phosphate pathway, and tricarboxy-
lic acid (T'CA) cycle] in 35 organisms in terms of sequence
variability around active sites.

MATERIALS AND METHODS
Organisms and Databases Used

In this article, we have analyzed 18 enzymes of the
central metabolic pathways, in 35 organisms, in terms of
sequence variability around active sites. A ribosomal tree,

shown in Figure 1(A), lists all the organisms studied in the F1
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Synechocystis sp.
Deinococcus radiodurans
Caenorhabditis elegans
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Drosophila melanogaster
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M. thermoautotrophicum
Archaeoglobus fulgidus
Methanococcus jannaschii
Pyrococcus horikoshii
Pyrococcus abyssi

— [ Thermoplasma acidophilum
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[Aeropyrum pernix
Sulfolobus solfataricus
— Aquifex aeolicus
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— Mycobacterium tuberculosis
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Vibrio cholerae

{Haemophilus influenzae
Pasteurella multocida

[Xylella fastidiosa
Neisseria meningitidis

Rickettsia prowazekii
Caulobacter crescentus
Mesorhizobium loti
Sinorhizobium meliloti
[— Helicobacter pylori
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Clostridium acetobutylicum
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_[Bacillus subtilis
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—— Lactococcus lactis

_[ Streptococcus pyogenes
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— Ureaplasma urealyticum

] {Mycoplasma genitalium
Mpycoplasma pneumoniae

[ Chlamydophila pneumoniae

_[ Chlamydia trachomatis

Chlamydia muridarum
[Borrelia burgdorferi
Treponema pallidum

Fig. 1. (A) Phylogenetic tree based on rRNA. Phylogenetic tree of 35 organisms studied, based on rRNA
sequences. Organisms represent all three kingdoms of life (i.e., archaea, bacteria, and eukarya). (B) Average
pairwise similarities are shown for the enzymes in central metabolic pathway. For heteromeric enzymes, the
subunit that has an active site is considered for the pairwise similarity calculation. We did not calculate the
values for the enzymes for which we did not have enough data or information regarding active sites, or if we
encountered other problems, as shown by asterisk.
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TABLE 1. Active Residues of the Enzymes

Enzyme EC No. PDB ID Active residues Reference
Malate dehydrogenase 1.1.1.37 11B6 R81,R87,N119, H177 20
Isocitrate dehydrogenase 1.1.1.42 1HQS R110, R120, R144, N106, C118, S104, T30, Y151 22
Fumarate reductase 1.3.99.1 1QLA R301a, R404a, H369a, F141a 17
Fructose-1,6-biphosphatase 3.1.3.11 1FRP R243a, K274a 23

analyses: All of the three major kingdoms of life (i.e.,
archaea, eubacteria, and eukarya) are represented here.

We collected all the sequences of central metabolic
enzymes from the KEGG database for 35 organisms.'! We
only selected those sequences that were clearly annotated
as functionally active sequence. In some cases, enzymes
have multiple sequences and we selected only those iso-
forms that can be found in at least 10 other organisms for
comparison. We began by selecting one representative
structure from the Protein Data Bank (PDB) for each of
the 14 enzymes.™* A list of the chosen PDB structures is
shown in Table I for four enzymes that we discuss in this
article.

Structural Identification of Active Site

We developed a new method to calculate the active-site
conservation sequence, which we call ASC ratio. Below, we
describe the calculation of our ASC ratio, which is essen-
tially the ratio of the active-site sequence similarity to the
overall full-length protein, and then we describe how it is
employed.

The first step in this procedure is the structural identifi-
cation of the active-site neighborhood. We got the central
position of this from the literature, using the position of
biochemically identified functionally important residues.

Table I shows the specific active-site residues that were
considered for the enzymes in our study. Next, we define
an active-site environment as all the residues that fall
within a radius of 10 A from the active-site residues. An
average of about 90 residues falls within this radius. We
have used the multipurpose program MOLEMAN to deter-
mine the residues in the active-site sphere.!® Given a
certain distance, the program can determine all residues
that fall within that radius from the selected residue.

Calculation of ASC Ratio

For each enzyme in question, we gathered all homologs
from the KEGG database (see above) and constructed a
multiple alignment. We used the program CLUSTAL to
generate multiple alignments of the sequences.'® Once we
determined the residues in the active-site sphere in each
representative structure, we mapped those residues onto
the sequences from other organisms, using multiple se-
quence alignment. Finally, we calculated the pairwise
sequence similarity between all members of the enzyme
for these active-site residues. This part of our analysis is
somewhat similar to three-dimensional (3D) cluster analy-
ses used earlier to study a group of protein families.'” The
overall strategy is illustrated in Figure 2. In addition to
the active sites, we also computed pairwise full-length
sequence similarity from our alignments. The basis of our

study is the general understanding that residues that form
the active-site environment are under selective pressure,
since they are critical to the enzymatic function. Therefore,
such residues are likely to be more conserved than the
residues in the balance of the sequence. In order to identify
sequences for which the active site is modified, we calcu-
lated a ratio of active-site similarity to full-length similar-
ity. We call this the ASC ratio, denoted by the symbol R.
Since the active-site residues are more likely to be con-
served than the residues in the remaining sequences, the
ratio of the two quantities, our ASC ratio, is expected to be
more than 1. However, if the residues in the active-site
sphere are modified, the pairwise active-site similarity
becomes lower than the pairwise full-length similarity,
and the ASC ratio will be less than 1. We have computed
all the ratios from the pairwise similarity values and
plotted their distribution. When an organism’s enzyme
sequences are all extensively modified, the ASC ratio
values will tend to cluster at the point where the ASC ratio
is less than 1, allowing for easy identification of those
organisms.

Detailed Characterization of Functional Shift:
Structural Comparison and Identification of New
Sequence Motifs

Based on our initial analysis, we determine the enzymes
and associated organisms for which we observed modified
active sites. In this step, we tried to analyze these enzymes
in terms of structure- and sequence-based characteriza-
tion. For sequence motif detection, we searched Genbank
database/PDB sequence database against a query se-
quence using standard BLAST. We have modeled the
structure using the program MODELER.'® We used the
built-in alignment generation option of the program, MA-
LIGN, to generate the alignment for modeling. Finally, we
used the program STRUCTAL to compare the homology
models.*®

RESULTS AND DISCUSSION

Enzymes in the central metabolism vary greatly in
average pairwise sequence identity. Some of the enzymes
in the pathway are highly conserved, with an average
sequence identity ~60%, and some are less conserved.
This is shown in Figure 1(B). For most of the central
metabolic enzymes, we have found that the sequences
around an active site are more conserved than the rest of
the sequences. However, there are three TCA-cycle en-
zymes and one glycolytic enzyme for which we have we
found large sequence variation near the active site (i.e., a
large ASC ratio); these we discuss below.
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Fig. 2. Strategy of structure-based sequence comparison. We deter-
mined the residues that fell within the sphere of a 10-A radius around the
active residues using MOLEMAN.® Then we mapped those residues
onto sequences from other organisms, using multiple sequence align-
ment. The red-colored residues in the sequence are the residues that fall
in the active-site sphere of the known structure; these are mapped onto
the sequences of other organisms. Corresponding residues in other
sequences are also shown in red. We computed pairwise sequence
similarity matrices for the active-sphere residues and for the overall
full-length sequence proteins shown.

Example 1: Isocitrate Dehydrogenase

The most interesting result is observed for isocitrate
dehydrogenase. This is a TCA-cycle enzyme, which cata-
lyzes the following reaction:

Isocitrate + NADP+ — 2-Oxoglutarate + CO, + NADPH

Distribution of ASC ratios shows that 6 organisms have
modified isocitrate dehydrogenase; therefore, the distribu-
tion of ASC ratios falls in the region where the value is less
than 1. Figure 3(A) shows the distribution of the ASC
ratios and the corresponding list of 6 organisms in the box.
They are all known pathogens. We have compared 33
sequences of isocitrate dehydrogenase from different organ-
isms. The probability of pathogenic sequences, as a sample
of the entire distribution of ASC ratios, having a mean
ASC ratio of 0.52 was tested using normal statistics. The
result shows that the probability p is very significant (i.e.,
less than 0.00001).

Homology modeling-based structural comparison
of the active site

We compared the structure of the active site by compar-
ing model structures of 4 pathogenic isocitrate dehydroge-
nases with the representative structure. We have modeled
the structure of the 30-residue cluster using homology
modeling, as described in the Methods section. Table II
shows the root-mean-square deviation (RMSD) difference
between the modeled isocitrate dehydrogenase and the
representative structure. The pairwise RMSD values are
quite low and indicate that the active site of the pathogenic
isocitrate dehydrogenase is most likely similar to the
known structure. It should be noted here that we are
comparing modeled structures derived from low homology
and are thus likely to observe a very large deviation.
Therefore, a small RMSD would mean a similarity in
structures.

Sequence motifs

Finally, we analyzed the sequence of the modified isocit-
rate dehydrogenase in terms of sequence motifs. It is
interesting to note that all the pathogenic sequences are
~300 residues longer than the class sequence length. It is
possible that there may be a domain addition to all the 6
pathogenic sequences. From the multiple sequence align-
ment, it is observed that the extra stretch of sequence
occurs on the N-terminal side of the enzyme. When we
searched for similar sequences in the sequence database,
we observed a 90-residue-long stretch of sequence in this
extra domain, with high sequence similarity to a leucine-
rich domain of an effector, YopM, of Yersinia pestis (a
bubonic plague pathogen). The stretch of sequences is
extremely rich in leucine. Although the antihost function
of this effector is unknown, YopM is believed to be an
important cytotoxin for bacterial virulence.?’ Figure 4
shows the sequence alignment of the sequence YopM with
the N-terminal domain of 4 pathogenic isocitrate dehydro-
genases. Other evidence that the modified isocitrate dehy-
drogenase may have additional function comes from the
observation that Mycobacterium tuberculosis has two iso-
citrate dehydrogenase sequences, Rv3339c and Rv0066c,
the first of which is a standard isocitrate dehydrogenase
sequence, and second of which is the modified sequence.
Therefore, the presence of the two sequences may indicate
an extra function of modified sequence.

It should be noted here that our phylogenetic clustering
of the organisms based on protein sequences also groups
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Fig. 3. Distribution of R-values for three enzymes in the TCA cycle. The x axis shows R-values and the y
axis shows frequency. Overall distribution is shown in the blue line, and the red line represents the distribution
that corresponds to the 6 organisms with modified sequences. The dashed bar represents the line where Ris 1;
the active-site similarity is equal to the overall sequence similarity. A, B, and C, respectively, represent the
distributions corresponding to isocitrate dehydrogenase, fumerate reductase, and malate dehydrogenase.
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Fig. 4. Sequence alignment of novel isocitrate dehydrogenase with the cytotoxin from Yersinia pestis.
Organisms are abbreviated as follows: Cje, Campylobacter jejuni; Hpy, Helicobacter pylori; \'ch, Vibrio
cholerae; Mle, Mycobacterium leprae; Mtu, M. tuberculosis; Xfa, Xylella fastidiosa.
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TABLE II. Comparison of Representative Structure and
Modeled Structure for Isocitrate Dehydrogenase
Based on C-a Atoms

Organisms RMSD
Campylobacter jejuni 0.76
Mycobacterium leprae 0.23
Mycobacterium tuberculosis 0.54
Neisseria meningitidis 1.25

the pathogenic organisms in one cluster, as shown in
Figure 5. Interestingly the structure of similar isocitrate
dehydrogense has been solved recently showing similarity
in the active site.?*

Example 2: Malate Dehydrogenase
Malate + NAD+ — Oxaloacetate + NADH

The distribution of ASC ratios for malate dehydrogenase
is shown in Figure 3(C). This figure shows that 5 organ-
isms—Pseudomonas aeruginosa, Clostridium acetobutyli-
cum, Pyrococcus abyssi, Methanococcus jannaschii, and
Pyrococcus horikoshii—all have modified malate dehydro-
genase sequences. However, previous studies show that M.
Jannaschii has two sequences for malate dehydrogenase,
MJ0490 and MJ1425.22 Although two sequences are anno-
tated to be malate dehydrogenase, MJ1425 is linked to
methylpterin biosynthesis. Therefore, it is likely that the
enzyme in these organisms has a dual role: catalyzing
conversion of malate and biosynthesis of the cellular
component. In our analyses, we have used sequences from
35 organisms. The probability of a sample of sequences of
this size having a mean ASC ratio of 0.45 (mean ASC ratio
for the modified organisms) was tested using normal
statistics and is less than 0.00001.

Example 3: Fumarate Reductase

Fumarate reductase, usually associated with organisms
with anaerobic respiration, catalyzes the following reac-
tion:

Fumarate + FADH2 — Succinate + FAD

This enzyme consists of three subunits: A, B, and C.
Subunit A binds to fumarate, and B and C bind to the Fe-S
cluster and membrane, respectively. Comparison of the
active-site residue cluster shows that while the Fe-S
cluster-binding B and flavin-binding C subunits are simi-
lar across organisms, the binding site of the fumarate in
subunit A is different for Helicobacter pylori and Campy-
lobacter jejuni compared with the rest of the organisms.
These two mucosal pathogens are known to have fumarate
respiration.?%2 The distribution of ASC ratios is shown in
Figure 3(B). In order to see if there is any structural
difference in the active site of the two pathogenic fumarate
reductases, we modeled the active-site structures for the
two organisms. Table II shows that the pairwise RMSD
from that of the known structure is low enough to argue
that the active-site structure in the two pathogenic fumar-
ate reductases is similar to the known structure.
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Fig. 5. Phylogenetic clustering based on isocitrate dehydrogenase
sequences of the organisms. Although organisms cluster differently in the
ribosomal tree, the 6 most diverged isocitrate dehydrogenase sequences
cluster together.

For both enzymes, isocitrate dehydrogenase and fumar-
ate reductase, we conclude that the active-site structures
of the enzymes in the suspect organisms are most likely to
be similar to the known structure. Thus, the sequence
variability observed near the functional site probably has
arole in altering the binding affinity of the substrate in the
active site and is possibly one of the mechanisms for
controlling of the enzymatic function in the organisms.
The number of sequences in fumarate reductase was 10.
The probability of a sample of sequences of this size having
a mean ASC ratio of 0.94 (mean ratio for the modified
organisms) was tested using normal statistics and is a
marginal 0.065. This can be a result of small size of the
data set.
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In addition, we have also observed a few glycolytic
enzymes for which there are a group of organisms with
modified active sites. Fructose-1,6-biphosphatase is one
such enzyme that catalyzes conversion of fructose-1,6-
biphosphatase to fructose-6-phosphate. We observed that
four organisms—Lactobacillus lactis, Clostridium acetobu-
tylicum, Bacillus subtilis, and Staphylococcus aureus—
have very diverged sequences around the active site.
Similarly, archaeal glyceralde-3-phosphate dehydroge-
nases have very modified sequences in the active site.
However, we were not able to characterize these enzymes
further, either structure- or sequencewise.

Statistical Test to Verify the Possibility of Bad
Alignment

It should be pointed out that the average pairwise
sequence similarity is quite low for some of the enzymes
we studied, as shown in Figure 1(B). In particular, the two
enzymes (EC Nos.: 11142 and 11137) for which we ob-
served significant sequence variation around the active
site have low-average pairwise sequence similarity. It is
possible that the observed sequence variation in the active
site for these two enzymes can be a result of a bad local
sequence alignment in that particular region. This will
lead to low pairwise sequence similarity for the active-site
sequence. We therefore performed a statistical test to
verify this possibility. We calculated the average pairwise
sequence similarity for a large number of random clusters,
each comprising ~90 residues. To generate a random
cluster, we selected a random residue in the representa-
tive sequence with known structure and then determined
all the residues that are present within the sphere of a 10
A radius. Using this procedure, we have generated large
number of random clusters. If the alignments in the
active-site sequences were particularly bad, active-site
sequence similarity would be lower than the average
sequence similarity values for these random clusters. For
example, in Vibrio cholerae, an organism with modified
isocitrate dehydrogenase, the average pairwise sequence
identity is 21% for random clusters, and that of active-site
cluster is 27%. Although the values are low, calculation
shows that active-site identity of 27% has a P-value of
1.2 X 10~ 2, Similarly for malate dehydrogenase, results
show that the P-values are less than 0.01 for the organ-
isms with modified active site. Therefore, we conclude that
the residues in the active-site sphere most likely represent
the active site in the enzyme and do not represent random
residues, as would be expected in case of bad alignment.
However, in the case of fumarate reductase, H. pylori and
C. jejuni have average active-site similarity of 36% and
less that average pairwise identity of random clusters
(40%), and have a P-value of less than 2.87 X 10~ 7 to occur
by chance. Clearly, the smaller number of organisms (i.e.,
10) in our analyses biases the results in fumarate reduc-
tase. However, the biological significance of this result is
not clear.

CONCLUSIONS

In this article, we have introduced a method to identify
functional shifts in protein families based on the calcula-

tion of an active-site conservation (ASC) ratio. For a
structurally based alignment of a protein family, this ratio
is the average sequence similarity for the active-site region
compared to the protein’s full-length. We have analyzed
the sequence variation of enzymes around active sites in a
large number of organisms. For most of the organisms, the
results showed that sequences are highly conserved around
the active site. However, there are 3 enzymes in the TCA
cycle for which we have observed that sequences are
extremely divergent. Homology modeling showed that
diverged sequences might have an active-site structure
similar to the known structure. Most interestingly, 6
pathogenic organisms have unique isocitrate dehydroge-
nase that has sequence similarity to a cytotoxin in Y. pestis
that is linked to bacterial pathogenicity.
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AQ1: If running head is not OK, please provide one that is 45 or fewer characters.
AQ2: Sentence beginning “We found that. . .” as meant?

AQ3: Sentence beginning “However,. . .” as meant?

AQ4: Sentence beginning “We tried. . .” as meant?

AQ5: Sentence beginning “In this article. . .” as meant?

AQ6: Sentence beginning “In some cases. . .” as meant?

AQT7: In sentence beginning “We developed. . .”, is wording change OK, so that the term matches the
acronym?

AQ8: Journal style requires that references be cited in numerical order. Ref. 26 has been changed to ref. 16,
and succeeding references have been renumbered.

AQ9: CO2 as meant?
AQ10: Sentence beginning “Other evidence. . .” as meant?

AQ11: In sentence beginning “However. . .”, the meaning is unclear. Please clarify. Are you saying that the
final P-value is too small to occur by chance?

AQ12: Sentence beginning “For a. . .” as meant?

AQ13: References numbered xx are not cited in body of article. Please cite in article or delete from reference
list. If cited, please cite in numerical order and renumber references in both text citations and in the reference
list.



