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“[It] does not consist of individuals, but expresses the sum of interrelations, the 
relations within which these individuals stand.”  
- adapted from Karl Marx, Grundrisse (1857) 
 
Abstract 
 
With the completion of genome sequences, the current challenge for biology is to 
determine the functions of all gene products and understand how they contribute in 
making an organism viable. For the first time, biological systems can be viewed as 
being finite, with a limited set of molecular parts. However, the full range of 
biological processes controlled by these parts is extremely complex. Thus, a key 
approach in genomic research is to divide the cellular contents into distinct sub-
populations, which are often given an "-omic" term. For example, the proteome is 
the full complement of proteins encoded by the genome, and the secretome is the 
part of it secreted from the cell. Carrying this further, we suggest the term 
"translatome" to describe the members of the proteome weighted by their 
abundance, and the "functome" to describe all the functions carried out by these. 
Once the individual sub-populations are defined and analyzed, we can then try to 
reconstruct the full organism by interrelating them, eventually allowing for a full 
and dynamic view of the cell. All this, of course, is made possible due to the 
increasing amount of large-scale data, resulting from functional genomics 
experiments. However, there are still many difficulties owing to the noisiness and 
complexity of the information. To some degree, these can be overcome through 
averaging with broad proteomic categories such as those implicit in functional and 
structural classifications. For illustration, we discuss one example in detail, 
interrelating transcript and cellular protein populations (transcriptome and 
translatome). Further information is available at http://bioinfo.mbb.yale.edu/what-
is-it 
 
Introduction 
 
The raw data produced by genome sequencing projects currently provides little insight 
into the precise workings of an organism at the molecular level (Luscombe et al., In 
Press). Therefore, the goal of functional genomics is to complement the genomic 
sequence by assigning useful biological information to every gene. Through this, we aim 
to improve our understanding of how the different biological molecules contained within 
the cell – i.e. DNA, RNA, proteins and metabolites – combine to make the organism 
viable.  Clearly, the main challenge is the elucidation of all molecular, cellular and 
physiological functions of each gene product. However, there are many subsidiary goals 
as part of this challenge, such as defining the three-dimensional structures of these 
macromolecules, their subcellular localisations, intermolecular interactions and 
expression levels.  Although gathering and classifying the necessary information is 
central to this process, it is impractical to rely on individual experiments for the 
potentially thousands of genes in each organism. Furthermore, with large-scale proteomic 
experiments still yet to be used widely, computational techniques, while sometimes based 
on less than ideal information, provide a crucial resource for assigning biological data. 
 



The paper by Antelmann et al. in this issue of Genome Research evaluates their earlier 
attempts to assign protein functions through computational means. Previously, the group 
used computational methods to predict all exported proteins – or members of the 
secretome – in Bacillus subtilis by searching for signal peptides and cell retention signals 
in the protein sequences. A better understanding of how and why a protein is secreted is 
valuable as the bacterium’s ability to export numerous enzymes enables it to degrade 
extracellular substrates and survive in a continuously changing environment.   Moreover, 
it will eventually allow these bacteria to be employed as “cellular factories” for secreting 
commercially valuable proteins in large quantities (Tjalsma et al. 2000).  
 
Antelmann et al.’s present paper aims to verify their previous predictions by 
experimentally characterising the entire population of secreted proteins using 2D gel 
electrophoresis and mass spectrometry. They showed that the original predictions 
correctly identified about 50% of all secreted proteins. Most of the disagreements were 
due to the inability to predict the secretion of proteins lacking the appropriate signal, or 
those containing seemingly inappropriate signals (cell retention signals). In summary, 
Antelmann et al.’s work highlights both the encouraging aspects of computational 
assignments of biological data, and reveals some of the shortcomings in the current 
methods.  

The path to function is filled with ’omes 
 
To describe their studies, Antelmann et al. coined the term “secretome”. This 'omic term 
is an example of the new lexicon that has recently appeared to define the varied 
populations and sub-populations in the cell (Figure 1). These terms are generally suffixed 
with “-ome”, with an associated research topic of “-omics”.   
 
Broadly, the existing ’omes can be divided into those that represent a population of 
molecules, and those that define their actions (Figure 1). For the first, populations provide 
an inventory or “parts list” of molecules contained within an organism (Gerstein & Hegyi 
1998; Skolnick & Fetrow 2000; Vukmirovic & Tilghman 2000; Qian et al. 2001). The 
genome, the entire DNA sequence of an organism, presents a basis for defining the 
proteome, a list of coding DNA regions that result in protein products.  Transcription of 
these coding sequences produces the transcriptome (Velculescu et al. 1997), which is 
the cellular complement of all mRNA under a variety of cellular conditions. Note, this 
population is weighted by the expression level of each molecule and, ideally, should 
incorporate the results of alternative splicing. Following translation of the transcriptome, 
we suggest the term translatome to describe the cellular population of proteins expressed 
in the organism at a given time, explicitly weighted by their abundance. It is important to 
note that whereas the membership of the genome and proteome are virtually static, the 
transcriptome and translatome are dynamic and continually change in response to internal 
and external events. Additional ’omes describe the presence of molecules that are not 
encoded by the genome, but are nonetheless essential, for instance, the metabolome 
(Tweeddale et al. 1998). Owing to the newness of most ’omic terms, a few still have 
competing definitions. This is most evident for the proteome (see Figure 1 caption). 
 
The second group of ’omes are fewer in number and describe the actions of the protein 
products. For example, the secretome is a subset of the proteome that is defined by its 
action, i.e. it is actively exported from the cell. The interactome (Sanchez et al. 1999) 



lists all of the specific interactions that are made between macromolecules in the cell. 
More abstractly, the regulome (web references only, see Figure 1) defines the genome-
wide regulatory network of the cell and most notably includes transcription regulation 
pathways. 
 
The elucidation of each of these ’omes contributes to the ultimate goal of functional 
genomics, defining the functome, which describes all of the functions that are assigned 
to each gene in the genome (on web page associated with Rison et al., 2000, 
biochem.ucl.ac.uk/~rison)The functions of a gene can be described at many levels, 
including their biochemical, cellular and physiological roles (Ashburner et al. 2000), and 
also depend on additional factors that are not immediately associated with their basic 
functions, such as subcellular localisation and intermolecular interactions. Therefore, 
aspects of the functome may be expressed in terms of other ’omes, for example those that 
group similar biochemical functions, e.g. the immunome (Pederson 1999), similar 
localisations, e.g. the secretome, and similar interactions, e.g. the interactome. For the 
record, we coin our own term here; at present, a large proportion of genes can only be 
described as members of the unknome – those with currently no functional information!  
 
Computational methods for defining ’omes  
 
There are a variety of computational approaches for defining ’omes (Gerstein & Honig 
2001):  
(i) Algorithmic methods for predicting genes, protein structure, interactions, or 
localization based on patterns in individual sequences or structures – e.g. defining the 
proteome or orfeome using a gene-finding algorithm on the genome (Claverie 1997; 
Guigo et al. 2000; Harrison et al. 2001; Yeh et al. 2001), determining the foldome from 
structure prediction of the proteome (Simons et al. 2001), determining the interactome 
from the foldome, using known binding sites (Teichmann et al. 2001), and determining 
the secretome from identifying signal sequences in the proteome (Tjalsma et al. 2000).  
(ii) Annotation transfer through homology, i.e. inferring structure or function based on 
sequence and structural information of homologous proteins (Brenner 1999; Hegyi & 
Gerstein 1999; Wilson et al. 2000; Thornton 2001; Hegyi and Gerstein (In Press) 
Gerstein 1997; Gerstein 1998;)  
(iii) Using a “guilt-by-association” method based on clustering where functions or 
interactions are inferred from clusters of functional genomic data, such as expression 
information. For example similar functions can sometimes be inferred through 
interactions with other proteins or similar expression profiles  (Eisen et al. 1998; 
Marcotte et al. 1999; Gerstein & Jansen 2000; Ito et al. 2001).  
 
Experimental methods for defining ’omes  
 
Although still in their infancy, several large-scale experimental techniques are designed 
to assess the nature of different ’omes. Gene expression studies are now well established 
and microarray or GeneChip technologies can be used to measure mRNA abundance in 
the cell and hence define the transcriptome (Epstein & Butow 2000). Detection of protein 
concentration and definition of the translatome is more difficult, however, as evidenced 
by the dearth of such data.  At present, the most prominent method employs two-
dimensional electrophoresis to isolate proteins followed by mass spectrometry for their 
identification (Futcher et al. 1999; Gygi et al. 1999; Naaby-Hansen et al. 2001) followed 



by quantification (Appel et al. 1997; Aebersold et al. 2000; Gygi et al. 2000).  The two-
hybrid system enables detection of specific protein-protein associations to build the 
interactome (Walhout & Vidal 2001; Uetz, 2000 et al; Ito et al 2001). Antelmann et al. in 
this issue used two-dimensional electrophoresis to determine the membership of the 
secretome. 
 
Given the goal of determining the functome, perhaps the most exciting technology is the 
protein chip system, which is capable of high-throughput screening of protein 
biochemical activity. (Zhu et al. 2000; Zhu In Press). Other methods for obtaining large-
scale protein functional characterization include a transposon insertion methodology 
(Ross-Macdonald et al. 1999).  
 
Although we discuss the computational and experimental methods separately, there is, in 
fact, an inseparable relationship between the two. On the one hand, data resulting from 
high-throughput experimentation require intensive computational interpretation and 
evaluation (Carson et al. 2001).  On the other, computational methods use empirical data 
to build a knowledge base for predictions. Furthermore, they sometimes produce 
questionable predictions that should be reviewed and confirmed through experiments, as 
Antelmann et al. point out. In addition to these high-throughput techniques, another 
interesting tactic is to aggregate the results of individual experiments through 
comprehensive literature searches. Although there clearly are difficulties with differing 
experimental conditions and varying interpretations, preliminary results have shown this 
to be an effective method (Jenssen et al. 2001; Marcotte et al. 2001; Ono et al. 2001). 
 
Interrelating different ’omes  
 
Having categorized the organism into different sub-populations, a fundamental approach 
in genomics is to establish relationships between the different ’omes. In other words, by 
piecing the individual ’omes together, we hope to build a full and dynamic view of the 
complex processes that support the organism. For example, how do the proteome and 
regulome combine to produce the translatome? 
 
As with defining the ’omes, these relationships can be explored in different ways:  
(i) Defining or assigning one ’ome based on another, as described above.  
(ii) Comparing one ’ome with another to better understand the processes that shift one 
population into its successor. For instance, this could be done by correlating expression 
measurements for the transcriptome and translatome (see below).  
(iii) Calculating “missing” (experimentally unattainable) information in one ’ome based 
on information in another one – e.g. using the known relationships between gene 
expression level and subcellular location to help predict the destination of proteins of 
unknown localization (Drawid & Gerstein 2000; Drawid et al. 2000). 
(iv) Describing the intersection between multiple populations. For example, combining 
data from the transcriptome and the functome could describe the array of biochemical, 
and potentially, physiological functions that are available to the cell at any given time 
(Hegyi & Gerstein 1999). 
 
 
The use of broad categories to interpret noisy data 
 



Functional genomics experiments generally give rise to very complicated data that are 
inherently hard to interpret. Furthermore, these data are often plagued with noise (Kerr et 
al. 2000).  Both factors can lead to inaccuracies and conflicting interpretations.  
 
A good example is gene expression measurements, which are known to fluctuate between 
experiments even if the conditions are apparently identical (Baldi & Long 2001). These 
fluctuations are often due to measurement errors, but there are also inherent biological 
variations of expression levels, relating to the stochastic nature of gene expression 
(Szallasi 1999).  One cause is the very low cellular concentrations of many transcription 
factors, meaning, that they bind promoters very rarely. Such events approximate to a 
Poisson process, and in fact, macroscopic chemical kinetics would fail to describe the 
resulting expression level of the gene (McAdams & Arkin 1999; Thattai & van 
Oudenaarden 2001). In another example, the interactome, when determined using the 
yeast two-hybrid technique is notorious for false positives and negatives (Ito et al. 2000; 
Serebriiskii et al. 2000; Ito et al. 2001; Legrain et al. 2001). 
 
A useful way to tackle noise and complexity of functional genomics information is to 
average the data from many different genes into broad ’omic categories (Jansen & 
Gerstein 2000). For instance, instead of looking at how the level of expression of an 
individual gene changes over a time-course, we can average all the genes in a functional 
category (e.g. glycolysis) together. This gives a more robust answer about the degree to 
which a functional system changes over the time-course. Likewise, if one wants to 
investigate the relationship between a gene's essentiality (whether or not it is 
essential(Winzeler et al. 1999) and its subcellular localization, it might be useful to 
combine the results for all proteins in the same compartment. This would give the 
average degree of essentiality of all nuclear proteins, cytoplasmic proteins, and so forth. 
In an actual study for predicting protein subcellular localization, we obtained more 
accurate predictions for the overall populations (96% accuracy) of a given subcellular 
compartment than for individual genes (75%) (Drawid et al. 2000). 
 
Thus, the strength of genomic studies lies in the global comparisons between biological 
systems rather than detailed examination of single genes or proteins. Genomic 
information is often misused when applied exclusively to individual genes. If one is 
interested only in one particular gene, there are many more conclusive experiments that 
should be consulted before using the results from genomics datasets. Therefore, genomic 
data should not be used in lieu of traditional biochemistry, but as an initial guideline to 
identify areas for deeper investigation and to see how those results fit in with the rest of 
the genome. 
 
Moreover, most genomics datasets give relative rather than absolute information, which 
means that information about a single gene has little meaning in isolation. For example, 
they are best used to identify “outlier” genes that are particularly highly expressed or 
have especially many interactions rather than to focus on the individual measurements for 
a particular gene. A gene that makes a particularly large number of interactions may 
indicate that it is a key component of the cell. One numerical technique that is 
particularly useful with regard to dealing with this information is expressing results 
through ranks – i.e. not giving the number of interactions of a particular gene product, but 
how it ranks when compared with others. Furthermore, it provides a powerful way to 
combine many different heterogeneous sources of information into a common and 



statistically robust numerical framework (Gerstein & Levitt 1997; Gerstein & Hegyi 
1998; Qian et al. 2001).  
 
These observations should be kept in mind when interacting with genomics tools and 
databases. Many websites focus on providing a lot of information for a single gene 
sequence or protein, in a “non-genomic” fashion. Rather, such sites should be designed to 
simultaneously display and manipulate large populations of genes. In the absence of such 
an ’omic interface, it is important that information resources at least accommodate bulk 
downloading of standardized data. 
  
A case study: Inter-relating the transcriptome and the translatome 
 
A specific example of comparing the transcriptome and translatome will illustrate the 
points we made about interrelating ’omes and using categories to interpret noisy data. 
Here the question is to what degree do highly expressed genes (transcriptome) correspond 
to highly expressed proteins (translatome)? We can get very different answers depending 
on the perspective we take: 
 
(i) Theoretical view 
Turning to the entire mRNA and protein populations, the change in protein concentration 
over time is equal to the rate of translation minus the rate of degradation.  Borrowing 
from chemical kinetics, this is approximately expressed by the equation dP(i,t)/dt = 
SE(i,t) - DP(i,t), where P is the abundance of protein i at time t, E is the corresponding 
expression level of this protein, S is a general rate of protein synthesis per mRNA, and D 
is a general rate of protein degradation per protein.  Obviously, this is highly simplified 
and in a more general context one would expect the rates of synthesis and degradation to 
be different for each gene and dependent on the regulatory effects of other genes over 
time.  In addition, the equation does not take into account the stochastic nature of gene 
expression (see above) (Chen et al. 1999). 
 
(ii) Direct comparison of individual mRNA and protein data 
At the moment, we do not have good enough data to apply models like the equation 
above.  However, there is an intuitive sense that highly expressed genes correspond to 
highly abundant proteins.  (One can see this by imagining the situation at steady-state, 
when the left-hand side of the equation is zero and a positive correlation between E and P 
results.)  Figure 2A shows the direct comparison between raw measurements of mRNA 
expression and protein abundance data for 181 genes in yeast drawn from two recent 
studies (Futcher et al. 1999; Gygi et al. 1999).  The two variables show a high degree of 
variation for individual data pairs and investigators have come to different conclusions 
about the general correlation between the them.  This is, to some degree, dependent on 
the subjective way of analyzing the data. 
 
(iii) Analysis of the data in terms of categories  
Although, the relationship between mRNA and protein levels is vague for individual 
genes, some of the statistics for broad categories of protein properties are much more 
robust. Figure 2B shows the protein secondary structure and functional composition in 
the genome, the transcriptome (i.e. weighted by mRNA abundance), and in the 
translatome (i.e. weighted by protein abundance). In contrast to the differences between 
mRNA and protein data for individual genes, the broad categories show that the 



transcriptome and translatome populations are remarkably similar; both contain roughly 
the same proportions of secondary structure and functional categories. Moreover, this 
contrasts the difference with the genome, which appears to have a distinctly different 
composition of functional categories. This illustrates that we get a more consistent picture 
when we average across the population, i.e. there is broad similarity between the 
characteristics of highly expressed mRNA and highly abundant proteins.  
 
 
Conclusion 
 
The ultimate goal of genomics is the elucidation of the functome, but there are many 
intermediate steps.   Through viewing the cell in terms of a list of distinct parts, we can 
define, part by part, each ’ome in an effort to determine and categorize functional 
information for each gene. High-throughput experimentation and computational 
techniques are valuable and complementary, i.e. conclusive results often cannot be made 
based on a single methodology.    It must be noted that this data is only valuable with 
regard to large populations, and as such, should only be used as a secondary source for 
single gene queries. Moreover, genomic approaches result in inaccurate and noisy data. 
This noise, while deafening on the single gene level, can be tolerated through the use of 
broad categories to analyse the data.   
 



Figure Legends 
 
Figure 1. An overview of the current ‘omic terminology.  
 
(A) A schematic of the main ’omes in the process of gene expression. (B) A table of 
’omes, together with the occurrence in the literature and on the web. Updated versions of 
the is table will be available through our website http://bioinfo.mbb.yale.edu/what-is-it . 
Note that we define five new ‘omes: the translatome, the foldome, the functome, the 
pseudome and the unknome Our definition of the translatome is partially motivated by 
the ambiguities in term proteome, which has two competing definitions. First, broadly 
favoured by computational biologists, is a list of all the proteins encoded in the genome 
(Gaasterland 1999; Doolittle 2000). In this context, it is equivalent to what some refer to 
as the orfeome, i.e. the set of genes excluding non-coding regions. Experimentalists, 
especially those involved in large-scale experiments such as expression analysis and 2D 
electrophoresis, favour a second definition. Here, it is used to describe the actual cellular 
contents of proteins, taking into account the different levels of protein concentrations 
(Yates 2000). We prefer the former definition for proteome, and use the term translatome 
for the latter. See   www.genomicglossaries.com/content/omes.asp for listing of other 
‘omes and their definitions. (C) The literature citations of four of the most widely used 
’omes over time. 
*   this term is used by other fields  as well 
** First Citation according to the Oxford English Dictionary 
 
Figure 2. Interrelating the transcriptome and the translatome 
 
(A) A direct comparison of protein abundance and mRNA expression.  The abundance 
data is from two recent studies (datasets 1 and 2) of a global comparison of protein and 
mRNA expression levels in yeast (Futcher et al. 1999; Gygi et al. 1999). The combined 
protein abundance dataset is an average of the data points from the two studies if the 
given gene product appears in both studies. The mRNA expression data is mainly derived 
from Holstege et al. (Holstege FC 1998).  Although there is a general trend for protein 
concentration to rise with mRNA levels, the actual correlation is weak and protein 
concentrations can sometimes vary by more than two orders of magnitude for a given 
mRNA level. Similar observations were reported by a study in human liver cells 
(Anderson & Seilhamer 1997). The mRNA expression data was scaled and the process is 
described on our website (http://bioinfo.mbb.yale.edu/expression).  (B) The composition 
of the genome (proteome), transcriptome and translatome in terms of broad categories: 
protein secondary structures and functions. This is based on the analysis in Jansen and 
Gerstein (2000) with updates to include protein abundance data. The bottom pie charts 
give the composition in the genome, the middle charts in the transcriptome and the top 
charts in the translatome. The compositions for the transcriptome and the translatome are 
calculated by weighting each mRNA/protein with its respective expression level.  The 
secondary structure composition does not vary significantly between the different ’omes, 
mainly because transcription and translation are independent of secondary structure. The 
right five pies analyse the functional composition.  We highlight the Energy and Cellular 
Organisation categories determined from MIPS (Mewes et al. 2000). A problem in 
comparing the different ’omes is that each represents a different set of genes.  For 
instance, protein levels have been measured only for a fraction of genes whereas mRNA 



levels are known for almost all genes. The pie charts show the compositions for the 
whole genome in the right column and a representative subset of genes with known 
protein levels in the left column. Comparing the left to the right immediately shows the 
experimental bias of two-dimensional electrophoresis (the method for measuring protein 
abundance) with respect to certain functional categories.  There is good agreement 
between the composition in the translatome and the transcriptome, despite the low 
correlation of protein and mRNA levels for individual genes. In comparison, the 
compositions in the genome are much lower. 
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Table 1 

Term Description Google PubMed
Year of first 

PubMed 
citation

Genome The full complement of genetic information both 
coding and non coding in the organism ~1880000 66171 1932 **

Proteome The protein-coding regions of the genome ~63,000 703 1995

Transcriptome The population of mRNA transcripts in the cell, 
weighted by their expression levels 3520 72 1997

Physiome Quantitative description of the physiological dynamics 
or functions of the whole organism 2980 15 1997

Metabolome
The quantitative complement of all the small 
molecules present in  a  cell in a specific physiological 
state

349 12 1998

Phenome
Qualitative identification of the form and function 
derived from genes, but lacking a quantitative, 
integrative definition

4980 6 1995

Morphome

The quantitative description of anatomical structure, 
biochemical and chemical composition of an intact 
organism, including its genome, proteome, cell, tissue 
and organ structures

238 2 1996

Interactome List of interactions between all macromolecules in a 
cell 56 2 1999

Glycome The population of carbohydrate molecules in the cell 46 1 2000

Secretome The population of gene products that are secreted 
from the cell 21 1 2000

Ribonome The population of RNA-coding regions of the genome 1 1 2000

Orfeome
The sum total of open reading frames in the genome, 
without regard to whether or not they code; a subset of 
this is the proteome

42 - -

Regulome Genome-wide regulatory network of the cell 18 - -

Cellome The entire complement of molecules and their 
interactions within a cell 17 - -

Operome The characterization of proteins with unkown biological 
function 8 - -

Transportome The population of the gene products that are 
transported; this includes the secretome 1 - -

Functome The population of gene products classified by their 
functions 1 - -

Translatome The population of proteins in the cell, weighted by their 
expression levels - - -

Pseudome The complement of pseudogenes in the proteome  - - -

Foldome The population of gene products classified though 
their tertiary structure - - -

Unknome* Genes of unknown function - - -
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