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bacterium forms an intimate association with
the gut of the nematode, and a large number of
genes with potential roles in this symbiotic
interaction have been identified, including
those encoding proteins that probably func-
tion in surface adhesion. The availability of
the complete sequence of the P. luminescens
genome thus represents an important mile-
stone toward exploiting the potential of this
bacterium as a biocontrol agent.

Access to new gene sequences encoding
potential protein toxins has further impli-
cations for bioengineering insect resistance 
in plants. Transgenic plants expressing 
B. thuringiensis genes are among the most suc-
cessful and widely applied biotechnological
products7. In some instances, transgenic 
B. thuringiensis crops have had a large impact
on yield and have resulted in less pesticide use.
But there is concern that insect resistance to 
B. thuringiensis toxins in transgenic plants, aris-
ing from changes in insect populations, will re-
duce the effectiveness of this toxin and its tran-
sgenic products. In addition, B. thuringiensis
toxin proteins are generally effective against a
narrow range of insects, and toxins have not
been identified or developed against some
insect pests. Several of the predicted toxin pro-
teins in P. luminescens have been shown to have
oral toxicity, but toxicity upon expression in
transgenic plants has not yet been reported.
The best-characterized toxic proteins from 
P. luminescens are large, and their expression in
plants may be problematic as was the case ini-
tially with B. thuringiensis peptides8.

Perhaps the most fascinating story yet to be
told from the analysis of the P. luminescence
genome is how this organism came to acquire
the genes that allow it to fill its specialized
niche so successfully. Comparison with the

genomes of related bacteria indicates that ex-
tensive horizontal gene transfer has occurred.
For example, Yersinia pestis, a flea-colonizing
bacterium and the causal agent of plague, is a
close relative. Other clues to the evolution of
the P. luminescens genome are provided by the
multitude of pathogenicity islands, phage
remains and abundant transposable elements
found in the P. luminescens genome.

Further genomic analyses will provide
answers to such questions as how and why
homologs of an insect juvenile hormone
esterase gene were incorporated into the
genome of P. luminescens and how P. lumi-
nescens implements and regulates all its differ-
ent insecticidal capabilities. The answers will
provide the tools to exploit this organism’s
capabilities to fight insect pests in new,
untested ways.
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Figure 1  Symbiont or pathogen? During its complex life cycle, P. luminescens rotates between being a
nematode symbiont, an insect pathogen and a nematode food source.
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A central challenge in genomic biology is to
determine how cells coordinate the expression
of thousands of genes throughout their life
cycle or in response to external stimuli, such as
nutrients or pheromones. In eukaryotes, gene
expression is modulated by various transcrip-
tion factors that bind to the promoter regions,
and different combinations of transcription
factors may alternatively activate or repress

gene expression. This is analogous to an elec-
tronic circuit, in which components are
switched on and off by a network of transis-
tors. In this issue, Bar-Joseph and colleagues1

report a computational approach to show that
in yeast, genes are indeed regulated in networks
that are controlled by groups of transcription
factors. Furthermore, they show that these reg-
ulatory networks also have a modular structure
in which groups of genes under the control of
the same regulators tend to behave similarly.

Genetic regulation and its mechanisms have
been investigated since the days of Jacob and
Monod and the discovery of the lac operon.
Traditionally, such studies are labor-intensive
and gene-specific and often require years of
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Reconstructing genetic networks in
yeast
Zhaolei Zhang & Mark Gerstein

By combining data from gene expression and DNA-binding experiments, a
computational algorithm identifies the genetic regulatory network in yeast.
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bench work. More recently, and with the com-
plete genome sequences of a number of
eukaryotic organisms becoming available, sev-
eral high-throughput genomic technologies
have been developed, which allow biologists to
study gene expression and gene regulation on a
whole-genome scale. The concept of determin-
ing gene expression at the whole-genome level
was first introduced by Brown and colleagues2,
who developed DNA microarrays to measure
the expression level for every gene in yeast
simultaneously.

In recent years, several groups have also
implemented chromatin immunoprecipita-
tion (ChIP) DNA chips for directly mapping
the in vivo physical interactions between tran-
scription factors and their DNA binding
sites3–6. Briefly, a cell line expressing a specific
tagged transcription factor is constructed.
After growth under experimental conditions,
DNA fragments bound to the tagged tran-
scription factors are recovered by a ChIP assay
and hybridized to DNA microarrays contain-
ing the complete set of the yeast intergenic

regions. Strong hybridization in a region prox-
imal to a gene would indicate transcription
factor binding to that gene’s promoter site.

Many researchers have attempted to apply
statistical or computational approaches to
reconstruct genetic regulatory networks based
on data sets derived from these whole-genome
methodologies. Most of the approaches have
consisted of applying clustering algorithms to
gene expression data to identify coexpressed
genes, which are surmised to be coregulated by
shared transcription factors7. Such approaches
have also been expanded to incorporate previ-
ous knowledge about the genes, such as cellular
functions or promoter sequence motifs8,9.
These methods have achieved various levels of
success, but an intrinsic limitation is their over-
reliance on expression data, which represent
the result rather than the cause of genetic regu-
lation. In addition, some of these methods
assume that expression levels are correlated
between the transcription factors and the
genes that they regulate. This has been proven
not always to be true10.

Other computational methods have also
been developed to extract regulatory informa-
tion from whole-genome DNA-binding data
sets5,6. The rationale behind these approaches
is that if two genes share a common set of
transcription factors, then they are probably
coregulated and belong to the same gene 
module. Using this location-based approach,
researchers have successfully identified some
basic regulatory motifs in the yeast network.
But this approach has its own limitations. First,
location information does not indicate
whether the nature of the regulation is in the
positive or negative direction; second, DNA-
protein interaction data are noisy owing to
much nonspecific binding.

As reported in the present paper, Bar-Joseph
et al. improved previous algorithms incorpo-
rating both DNA-binding data and gene
expression data. Their new algorithm, called
GRAM (genetic regulatory modules), works in
three steps, as shown in Figure 1. As described
in their paper1, the authors reconstructed a
yeast rich media regulatory network using
DNA-binding data from 106 transcription fac-
tors and over 500 gene expression data sets.
The final regulatory network contains 655 dis-
tinct genes partitioned into 106 modules, and
68 transcription factors are placed in the net-
work representing regulatory hubs (see Figure
1 in original paper; ref. 1). They carried out
gene-specific ChIP experiments to verify a
number of selected regulatory interactions
predicted by GRAM.

The power of GRAM is evident in the fact
that 40% of the 1,560 unique regulatory inter-
actions it identifies in yeast would not have
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Figure 1 Schematic describing the GRAM algorithm. The data from gene expression and ChIP-chip
experiments are presented on the top as stacked expression profiles and a P value table, respectively. In
the P value table, the confidence values that are less than the strict threshold (p1) are colored red. In
the ChIP-chip experiments, P values were calculated for each spot on the microarray to represent the
confidence value (the smaller the P value, the more likely the observed DNA binding is real)5. The
GRAM algorithm first selects a ‘core set’ of genes that share a common group of transcription factors
and also have similar expression profiles. In this example, the core set consists of genes a, b, c, d and e
but not f and g because only the first five genes have P values strictly less than p1 for the subset of
regulators TF1, TF2, TF3 and TF4. A center expression profile is then computed from this core set of
genes. The algorithm then revisits the P value table to recompute a combined P value for every gene
with respect to the subset of regulators. A gene is added to the selected set if its expression profile is
close to the center expression profile and the combined P value is less than p1. The final selected set
of genes is exported as a gene module. The above procedures are repeated for every possible
combination of transcription factors in yeast to derive the complete regulatory network.
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been detected using only the DNA-binding
data. Another advantage of the combined
approach is that it can also predict directional-
ity of the edges in the network; that is, it can be
inferred whether the genes in a module are
upregulated or downregulated by examining
their expression correlations. An important
benefit of having a complete genetic network
of an organism is its potential to provide clues
on a gene’s role in, for example, signal trans-
duction pathways and thereby identify its
interaction partners.

It is accepted that genes in the same network
module generally have similar cellular func-
tions. This has also been observed among 
network modules generated by GRAM.
Notably, the authors found that in most cases
in which a gene module is regulated by more
than one transcription factor, previous evi-
dence could always be found suggesting poten-
tial physical or functional interactions between
these transcription factors. All these observa-
tions prove that the regulatory networks pro-
duced by GRAM are biologically relevant and
promise to serve as a blueprint to direct future
experiments.

Like microarrays in the late 1990s, it is
almost certain that the new ChIP-chip technol-
ogy will quickly catch on with researchers
worldwide, and before long, hundreds of
genome-wide DNA-binding data sets will be
available. Powerful and sophisticated com-
puter algorithms, such as GRAM, will be
needed to analyze these data.

Finally, many other research avenues can be
pursued. For example, these tools can be
applied to determine the degree of cons-
ervation of modular network structures or reg-
ulatory interactions among closely related
species, such as Saccharomyces cerevisiae and
Schizosaccharomyces pombe. This type of com-
parative analysis can potentially shed light on
the evolution of regulatory networks. Also, the
current knowledge on genetic networks does
not paint a truly dynamic picture of the
processes taking place inside a cell. Existing
technologies and algorithms, such as GRAM,
are the first steps toward the development of
tools capable of capturing the dynamics of
genetic regulatory networks.
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Proteomics—the study of the complement of
expressed cellular proteins (or proteome)—
has catapulted to the forefront of biological
research. This advance is due to the develop-
ment of enabling technologies for producing
large-scale data sets of protein activities and to
the increasing number of annotated genome
sequences that can serve as prerequisite pro-
teome ‘blueprints’. Pioneering methods for
analysis of the proteome have been developed
in yeast and have relied on the systematic
cloning of open reading frames (ORFs) for
subsequent expression or generation of
genomic sets of strains expressing tagged pro-
teins suitable for a variety of array-based
manipulations. In two recent Nature papers,
the Weissman and O’Shea groups1,2 report two
notable additions to the arsenal of tools avail-
able for the comprehensive analysis of gene
and protein function in yeast. The authors
describe two collections of yeast strains in
which each ORF is fused with affinity or fluo-
rescence tags, thereby providing the most com-
prehensive and sensitive view yet of the
expressed proteome and its subcellular loca-
tion in a eukaryotic cell.

In the past few years, myriad genetic and bio-
chemical methods have been used to query
genomic sets of proteins for biochemical activ-
ity and protein-protein interactions. Notable
landmarks on the road to the functional descri-
ption of the yeast proteome include large-scale
two-hybrid screens, immunoprecipitation–
mass spectrometric analysis of protein com-
plexes and the generation of tagged sets of pro-

teins for production of functional protein
chips (reviewed in ref. 3). The generation of
protein complex interaction maps and func-
tional surveys of proteins for DNA binding
and other activities are providing a rich, but
relatively static, view of the yeast ‘interactome’.
A more complete ‘cell biological’ view of the
proteome will emerge from integration of pro-
teomics information with functional genomics
data derived from transcriptional profiling and
gene disruption projects, as well as a picture of
the subcellular distribution of proteins and
their relative abundance.

In a tour-de-force of strain construction,
Ghaemmaghami et al.1 used a PCR-based
homologous recombination strategy to insert a
tandem affinity purification (TAP) tag at the 
C termini of all predicted yeast ORFs. They
reasoned that an explanation of the biological
properties of the proteome would require not
only a description of macromolecular com-
plexes and their subcellular location, but also
an experimental description of the expressed
proteome and a reasonable measure of the
absolute levels of proteins in the cell. Two fea-
tures of the strain collection allow both a sur-
vey of expressed proteins in a particular
physiological circumstance and a measure of
their cellular abundance. First, the tagged pro-
teins are expressed from their native promoters
in their endogenous chromosomal location
and should be responsive to normal regulatory
circuitry. Second, each ORF is marked with a
common tag allowing measurement of the
absolute abundance of each protein using
quantitative western-blot analyses (see
http://yeastgfp.ucsf.edu/). A sensible set of test
cases suggests that the regulation and activity
of most yeast proteins is unperturbed by the 
C-terminal tag, which bodes well for the utility
of the strain set in future genetic and cell bio-
logical studies and is good news for the many
other projects that have used convenient tags
to study gene and protein function.

The authors were able to successfully TAP-
tag 6,109 of the 6,243 predicted ORFs and
observed a protein product for 4,251 or 70% of
the tagged proteome in log-phase yeast cells
grown in optimal laboratory conditions1. A

Playing tag with the yeast
proteome
Brenda J Andrews, Gary D Bader & Charles Boone

Two tagged proteome studies offer the most intimate and detailed view into
the inner works of yeast cells to date.
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