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[AU: OK?]
A central challenge in genomic biology is to
determine how cells coordinate the expression
of thousands of genes throughout their life
cycle or in response to external stimuli, such as
nutrients or pheromones. [AU: OK?] In
eukaryotes, gene expression is modulated by
various transcription factors that bind to the
promoter regions, and different combinations
of transcription factors may alternatively acti-
vate or repress gene expression. This is analo-
gous to an electronic circuit, in which
components are switched on and off by a net-
work of transistors. In this issue, Bar-Joseph
and colleagues1 report a computational
approach to show that in yeast, genes are
indeed regulated in networks that are con-
trolled by groups of transcription factors.
Furthermore, they show that these regulatory
networks also have a modular structure in
which groups of genes under the control of
the same regulators tend to behave similarly.
[AU: OK?]

Genetic regulation and its mechanisms
have been investigated since the days of Jacob
and Monod and the discovery of the lac
operon. Traditionally, such studies are labor-
intensive and gene-specific and often require
years of bench work. More recently, and with
the complete genome sequences of a number
of eukaryotic organisms becoming available,
several high-throughput genomic technolo-
gies have been developed, which allow biolo-
gists to study gene expression and gene
regulation on a whole-genome scale. The
concept of determining gene expression at the
whole-genome level was first introduced by
Brown and colleagues2, who developed DNA
microarrays to measure the expression level
for every gene in yeast simultaneously.

In recent years, several groups have also
implemented chromatin immunoprecipita-
tion (ChIP) DNA chips for directly mapping

the in vivo physical interactions between tran-
scription factors and their DNA binding
sites3–6. Briefly, a cell line expressing a specific
tagged transcription factor is constructed.
After growth under experimental conditions,
DNA fragments bound to the tagged tran-
scription factors are recovered by a ChIP assay
and hybridized to DNA microarrays contain-
ing the complete set of the yeast intergenic
regions. Strong hybridization in a region prox-
imal to a gene would indicate transcription
factor binding to that gene’s promoter site.

Many researchers have attempted to apply
statistical or computational approaches to
reconstruct genetic regulatory networks based
on data sets derived from these whole-genome
methodologies. Most of the approaches have
consisted of applying clustering algorithms to
gene expression data to identify coexpressed
genes, which are surmised to be coregulated by
shared transcription factors7. Such approaches
have also been expanded to incorporate previ-
ous knowledge about the genes, such as cellular
functions or promoter sequence motifs8,9.
These methods have achieved various levels of
success, but an intrinsic limitation is their over-
reliance on expression data, which represent
the result rather than the cause of genetic regu-
lation. In addition, some of these methods
assume that expression levels are correlated
between the transcription factors and the
genes that they regulate. This has been proven
not always to be true10.

Other computational methods have also
been developed to extract regulatory infor-
mation from whole-genome DNA-binding
data sets5,6. The rationale behind these
approaches is that if two genes share a com-
mon set of transcription factors, then they are
probably coregulated and belong to the same
gene module. Using this location-based
approach, researchers have successfully iden-
tified some basic regulatory motifs in the
yeast network. But this approach has its own
limitations. First, location information does
not indicate whether the nature of the regula-
tion is in the positive or negative direction;
second, DNA-protein interaction data are
noisy owing to much nonspecific binding.

As reported in the present paper, Bar-
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Joseph et al. improved previous algorithms
incorporating both DNA-binding data and
gene expression data. Their new algorithm,
called GRAM (genetic regulatory modules),
works in three steps, as shown in Figure 1. As
described in their paper1, the authors recon-
structed a yeast rich media regulatory network
using DNA-binding data from 106 transcrip-
tion factors and over 500 gene expression data
sets. The final regulatory network contains
655 distinct genes partitioned into 106 mod-
ules, and 68 transcription factors are placed in

the network representing regulatory hubs (see
Figure 1 in original paper; ref. 1). They carried
out gene-specific ChIP experiments to verify a
number of selected regulatory interactions
predicted by GRAM.

The power of GRAM is evident in the fact
that 40% of the 1,560 unique regulatory
interactions it identifies in yeast would not
have been detected using only the DNA-bind-
ing data. Another advantage of the combined
approach is that it can also predict direction-
ality of the edges in the network; that is, it can

be inferred whether the genes in a module are
upregulated or downregulated by examining
their expression correlations. An important
benefit of having a complete genetic network
of an organism is its potential to provide clues
on a gene’s role in, for example, signal trans-
duction pathways and thereby identify its
interaction partners.

It is accepted that genes in the same net-
work module generally have similar cellular
functions. This has also been observed among
network modules generated by GRAM.
Notably, the authors found that in most cases
in which a gene module is regulated by more
than one transcription factor, previous evi-
dence could always be found suggesting
potential physical or functional interactions
between these transcription factors. [AU:
Clarify – from the data sets used here or from
previous published research?] All these
observations prove that the regulatory net-
works produced by GRAM are biologically
relevant and promise to serve as a blueprint to
direct future experiments.

Like microarrays in the late 1990s, it is
almost certain that the new ChIP-chip tech-
nology will quickly catch on with researchers
worldwide, and before long, hundreds of
genome-wide DNA-binding data sets will be
available. Powerful and sophisticated com-
puter algorithms, such as GRAM, will be
needed to analyze these data.

Finally, many other research avenues can be
pursued. For example, these tools can be
applied to determine the degree of conserva-
tion of modular network structures or regula-
tory interactions among closely related
species, such as Saccharomyces cerevisiae and
Schizosaccharomyces pombe. This type of
comparative analysis can potentially shed
light on the evolution of regulatory networks.
Also, the current knowledge on genetic net-
works does not paint a truly dynamic picture
of the processes taking place inside a cell.
Existing technologies and algorithms, such as
GRAM, are the first steps toward the develop-
ment of tools capable of capturing the
dynamics of genetic regulatory networks.
[AU: Edits throughout paragraph OK?]
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Figure 1 Schematic describing the GRAM algorithm. The data from gene expression and ChIP-chip
experiments are presented on the top as stacked expression profiles and a P value table, respectively. In
the P value table, the confidence values that are less than the strict threshold (p1) are colored red. In
the ChIP-chip experiments, P values were calculated for each spot on the microarray to represent the
confidence value (the smaller the P value, the more likely the observed DNA binding is real)5. The
GRAM algorithm first selects a ‘core set’ of genes that share a common group of transcription factors
and also have similar expression profiles. In this example, the core set consists of genes a, b, c, d and e
but not f and g because only the first five genes have P values strictly less than p1 for the subset of
regulators TF1, TF2, TF3 and TF4. A center expression profile is then computed from this core set of
genes. The algorithm then revisits the P value table to recompute a combined P value for every gene
with respect to the subset of regulators. A gene is added to the selected set if its expression profile is
close to the center expression profile and the combined P value is less than p1. The final selected set
of genes is exported as a gene module. The above procedures are repeated for every possible
combination of transcription factors in yeast to derive the complete regulatory network. [AU: Edits OK?]
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