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Abstract
We developed an approach using Bayesian networks to predict protein-protein

interactions genome-wide in yeast.  Our method naturally weights and combines into

reliable predictions genomic features only weakly associated with interaction (e.g.,

mRNA co-expression, co-essentiality and co-localization). In addition to de novo

predictions, it can integrate often noisy, experimental interaction datasets. We observe

that at given levels of sensitivity our predictions are more accurate than the existing high-

throughput experimental datasets. We validate our predictions with new TAP-tagging

experiments. Our analysis, which gives a comprehensive view of yeast interactions, is

available at genecensus.org/intint.
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Many fundamental cellular processes involve protein-protein interactions, and

comprehensively identifying them is important to systematically defining the biological

role of proteins.  New experimental and computational methods have vastly increased the

number of known or putative interactions, catalogued in databases (1-7).  Much genomic

information also relates to interactions indirectly: Interacting proteins are often

significantly co-expressed (as shown by microarrays) and co-localized (to the same

subcellular compartment) (8, 9).

Unfortunately, interaction datasets are often incomplete and contradictory (10-12).  In the

context of genome-wide analyses these inaccuracies are greatly magnified because the

protein pairs that do not interact (negatives) far outnumber those that do (positives).  For

instance, in yeast the ~6000 proteins allow for ~18 million potential interactions, but the

estimated number of actual interactions is below 100,000 (10, 13, 14).  Thus, even

reliable techniques can generate many false positives when applied genome-wide.  This is

similar to a diagnostic with a 1% false-positive rate for a rare disease occurring in 0.1%

of the population, which would roughly produce one true positive for every 10 false ones.

Further information is necessary.

Consequently, when evaluating protein-protein interactions, one needs to integrate

evidence from many different sources (15-17).  Here, we propose a Bayesian approach

for integrating interaction information that allows for the probabilistic combination of

multiple datasets and demonstrate its application to yeast (18).  Our approach can be used

for combining noisy interaction datasets and for predicting interactions de novo, from

other genomic information.  The basic idea is to assess each source of evidence for

interactions by comparing it against samples of known positives and negatives (‘gold-
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standards’), yielding a statistical reliability.  Then, extrapolating genome-wide, we

predict the chance of possible interactions for every protein pair by combining each

independent evidence source according to its reliability.  We verified our predictions by

comparing them against existing experimental interaction data (not in the gold-standard)

as well as new TAP (tandem-affinity-purification) tagging experiments.

Among the many possible machine-learning approaches that could be applied to

predicting interactions (ranging from simple unions and intersections of datasets to neural

networks, decision trees, and support-vector machines), Bayesian networks have clear

advantages (19): They allow for combining highly dissimilar types of data (i.e. numerical

and categorical), converting them to a common probabilistic framework, without

unnecessary simplification.  They readily accommodate missing data.  And they naturally

weight each information source according to its reliability.  In contrast to ‘black-box’

predictors, Bayesian networks are readily interpretable as they represent conditional

probability relationships among information sources.

The gold-standard dataset on which we train (‘parameterize’) the Bayesian network

should ideally be: (i) independent from the data sources serving as evidence, (ii)

sufficiently large for reliable statistics and (iii) free of systematic bias.  We used the

MIPS (Munich Information Center for Protein Sequences) complexes catalog as the gold-

standard for positives (6).  This hand-curated list of protein complexes is based on the

literature (8,250 pairs).  A negatives gold-standard is harder to define, but essential for

successful training.  Thus, we synthesized negatives from lists of proteins in separate

subcellular compartments (9).  These positive and negative gold-standards satisfy the first
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two criteria and provide a good practical solution for the third.  (Note, our goal was not to

predict physical interactions, but whether two proteins exist in the same complex.)

As a measure of reliability, the overlap of information sources (i.e., ‘interaction datasets’,

which could either be noisy experimental data or sets of genomic features) with the gold-

standards can be expressed in terms of a ‘likelihood ratio’.  For example, consider a

genomic feature f expressed in binary terms (i.e., ‘present’ or ‘absent’).  The likelihood

ratio L(f) is then defined as the fraction of gold-standard positives having feature f

divided by the fraction of negatives having f.  For two features f1 and f2 with uncorrelated

evidence, the likelihood ratio of the combined evidence is simply the product L(f1, f2) =

L(f1)L(f2).  For correlated evidence, L(f1, f2) cannot be factorized this way.  Bayesian

networks are a formal representation of such relationships between features.  The

combined likelihood ratio is proportional to the estimated odds that two proteins are in

the same complex given multiple sources of information.

We predict a protein pair as positive if its combined likelihood ratio exceeds a particular

cutoff (L > Lcut) (negative otherwise).  To get an overall assessment of how the prediction

performs, we segmented the gold-standard into separate training and testing sets (using a

seven-fold cross-validation protocol). Then we evaluated the number of true (TP) and

false positive (FP) predictions in the testing set.  Finally, we applied the Bayesian

network beyond the testing set, computing likelihood ratios for all possible protein pairs

in the genome.

Figure 1 schematically shows the information sources and results of our calculations.  We

term the results ‘probabilistic interactomes’ (PIs), in which each protein pair is associated
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with a probability measure for being in the same complex (i.e. likelihood ratio L).  Our

procedure not only allows combining existing experimental interaction datasets (resulting

in a PI-experimental or ‘PIE’), but also the de novo prediction of protein complexes from

genomic datasets (when the input data are not interaction datasets per se, resulting in a

PI-predicted or ‘PIP’).

We combined four interaction datasets from high-throughput experiments into the PIE (1-

4) (figure 1b).  The PIE represents a transformation of the individual binary-valued

interactions sets into a dataset where every protein pair is weighted according to the

likelihood that it exists within a complex.

We computed the PIP from several genomic data sources: The correlation of mRNA

amounts in two expression datasets (one with temporal profiles during the cell cycle, one

of expression levels under 300 cellular conditions), two sets of information on biological

function and information about whether proteins are essential for survival (6, 20-22).

Although none of these information sources are interaction data per se, they contain

information weakly associated with interaction: Two subunits of the same protein

complex often have co-regulated mRNA expression and similar biological functions and

are more likely to be both essential or non-essential (8).

For computing the PIE and the PIP we used two different types of Bayesian networks: a

‘naïve’ network for the PIP and a fully connected one for the PIE (19).  The naïve

network is simpler to compute, but requires information sources providing essentially

uncorrelated evidence.  In contrast, the fully connected Bayesian network accommodates

correlated evidence, which is the case for the four experimental interaction datasets.



7

Finally, we combined the PIP, PIE and the gold-standard into a total PI (PIT), which

represents our most comprehensive view of the known and putative protein complexes in

yeast (note 1).  Since the PIP and PIE data provide essentially uncorrelated evidence for

protein-protein interactions, we chose a naïve network to construct the PIT.

Figure 1c gives an overview of how we compared the PIP, PIE, gold-standard and our

new experiments.  In particular, figure 2 shows the performance of the integration

resulting in the PIP and PIE.  When tested against the gold-standard, we observed that the

ratio of true to false positives (TP/FP) increases monotonically with Lcut, confirming L as

an appropriate measure of the odds of a real interaction.  Conservatively estimated,

protein pairs with L > 600 have a better than 50% chance of being in the same complex,

suggesting Lcut = 600 as a useful threshold (19).  Unless otherwise noted, we use this

throughout our analysis.  It gives 9,897 predicted interactions from the PIP and 163 from

the PIE.  In contrast, likelihood ratios derived from single genomic features (e.g., just

mRNA co-expression) or from individual interaction experiments (e.g., just the Ho

dataset) did not exceed the cutoff when used alone, with TP/FP values far below 1.  This

demonstrates that information sources that, taken alone, are only weak predictors of

interactions can yield reliable predictions when combined.

The PIP had higher sensitivity than the PIE for comparable TP/FP ratios (figure 2c).

(‘Sensitivity’ measures coverage and is defined as TP/P, where P is the number of gold-

standard positives.)  Specifically, the sensitivity of the PIP is ~27% at our cutoff.  This

may seem low, but compares favorably with the PIE, whose sensitivity was below 1%.

This means that we can predict, at comparable error levels, more complex interactions de

novo than are present in the high-throughput experimental interaction datasets.
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One might ask whether simpler voting procedures can match the performance of more

complicated machine-learning methods such as Bayesian networks.  To test this, we

compared the PIP with a voting procedure where each of the four genomic features

contributes an additive vote towards positive classification. We found that the Bayesian

network achieved greater sensitivity for comparable TP/FP ratios (figure 2c) (19).

Figure 3 shows parts of the PIP and PIE graphs and how these compare with the gold-

standard and our new experiments.  First, to test whether the thresholded PIP was biased

towards certain complexes, we looked at the distribution of predictions amongst gold-

standard positives (figure 3a); they were roughly equally apportioned amongst the

different complexes, suggesting a lack of bias.

While we have thus far treated all interactions as independent, the joint distribution of

interactions in the PIs can help identify large complexes: An ideal complex should be a

‘clique’ in an interaction graph (i.e., a subgraph with N(N - 1)/2 links between N

proteins).  Although this rarely happens in practice, because of incorrect or missing links,

large complexes tend to have many interconnections within them, whereas false-positive

links to outside proteins tend to occur randomly, without coherent pattern (figure 4).

Figure 3b shows parts of the thresholded PIP that are restricted to proteins with ≥20 links

(figure 3b) (23), highlighting large complexes.  Some predicted complexes overlap with

the gold-standard positives (cytoplasmic ribosome) or the PIE (exosome, RNA

polymerase I, 26S proteasome).  Comparison with the gold-standard negatives showed

where the PIP likely produced false complexes.  Many protein associations only appear in

the PIP and thus potentially represent new interactions and complexes.  An interesting
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example is the mitochondrial ribosome; it has appreciable overlap with both gold-

standard positives and the PIE, and also contains plausible, newly predicted interactions

with three proteins (19).

To further test the predictions in the PIP, we conducted TAP-tagging experiments, in

which a protein expressed at its normal intracellular concentration (‘bait’) is tagged and

used to ‘pull down’ endogenous protein complexes.  We picked 98 proteins as TAP-

tagging baits.  These produced 424 experimental interactions overlapping with the PIP

thresholded at Lcut=300.  (185 of these, in turn, overlapped with gold-standard positives,

and 16 with negatives, highlighting the reliability of our experiments.)

Figure 3c shows three examples of the overlap between the PIP and TAP-tagging.  We

predicted that the putative DEAD-box RNA helicase Dbp3 interacts with three other

RNA helicases (Hca4, Mak5 and Dbp7), with proteins implicated in rRNA metabolism

(e.g., Nop2, Rrp5, Mak5 and components of RNAPI), and with Nsr1, the yeast homolog

of mammalian Nucleolin and a GAR-domain containing protein (24).  When Dbp3 was

TAP-tagged and purified, we found previously unknown interactions with Nsr1, Hca4

and Nop1 connecting Dbp3 with known rRNA processing proteins.  Further purifications

using TAP-tagged versions of Mak5, Rrp5, Dbp7, Dbp3, Nsr1, Hca4 and Nop2 doubly

verified the physical association.

The nucleosome, a fundamental unit within chromatin, furnishes a second example of

overlap.  It is composed of 8 histones (2 H2A, 2 H2B, 2 H3, and 2 H4), which can block

RNA-polymerase-II progression.  This blockage is relieved upon interaction with the

FACT complex (also known as SPN or yFACT), which consists of Spt16 and Pob3 in
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yeast.  Mammalian Pob3 has an HMG domain for interaction with histones; however,

yeast Pob3 lacks this.  Instead, the HMG protein NHP6 (with two virtually identical

isoforms, NHP6A and NHP6B) binds histones (25-27).  (It also is known that NHP6 also

binds DNA in competition with the nucleosome (28).)  Our thresholded PIP and

experimental data document a specific interaction between NHP6A and HHF1 (H4),

pinpointing the contact between the nucleosome and NHP6 to the H3-H4 heterodimer

(HHF1 and HHT1).  This is plausible, as NHP6 has been shown not to influence

nucleosome reassembly (29), it is unlikely that it binds with the H2A-H2B dimer, which

needs to reassociate with the nucleosome after binding FACT.

The replication complex, a third experimental validation of the PIP, assembles and

dissembles from transiently interacting sub-complexes (e.g. MCM proteins, ORC and

polymerases) throughout the cell-cycle (8, 30). Our predicted and experimentally verified

interactions connect it, probably transiently, to another sub-complex, Replication Factor

A (RFA, composed of Rfa1, Rfa2 and Rfa3).  Specifically, we predicted and verified

interactions between RFA and two proteins associated with other replication sub-

complexes: Rfa2 with Top2 (a component of the nuclear synaptonemal complex) and

Rfa1 with Pri2 (DNA polymerase alpha-primase subunit).

Finally, we predicted and verified by TAP-tagging that two proteins involved in

translation elongation (Tef2 and Eft2) interact.  This is plausible given that protein

elongation is mediated by three factors in yeast: EF-1 alpha (Tef1, Tef2), EF-2 (Eft1,

Eft2), and EF-3 (Hef3, Yef3); most other eukaryotes lack EF-3.  Previous experimental

data suggest an interaction between yeast EF-1 alpha and EF-3 (31).  An interaction

between EF-1 alpha and EF-2 had not been demonstrated, although this is reasonable
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given their similar roles in elongation and their overlapping binding sites on the ribosome

(32).

In summary, we have developed a Bayesian approach for integrating weakly predictive

genomic features into reliable predictions of protein-protein interactions.  Our de novo

prediction of complexes replicated interactions found in the gold-standard positives and

PIE.  In addition, we were able to confirm several of our predictions with new

experiments.  The accuracy of the PIP was comparable to that of the PIE whilst

simultaneously achieving greater coverage.

Our procedure lends itself naturally to the addition of more features, possibly further

improving results.  We anticipate that protein-protein interactions in organisms other than

yeast can be explored in similar ways.
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Figure captions

Figure 1: The information sources we integrated and how we compared them with each

other.  Part A: The three different types of data we used: (i) Interaction data from high-

throughput experiments. These comprise large-scale two-hybrid screens (Y2H) (1, 2) and

in-vivo pull-down experiments (3, 4). (ii) Other genomic features. We considered

expression data, biological function of proteins (from Gene Ontology biological process

and the MIPS functional catalog) and data about whether proteins are essential (6, 19-22).

(iii) Gold-standards of known interactions and non-interacting protein pairs. (Note, the

MIPS functional catalog is different than the MIPS complexes catalog used for the gold

standard.)  Part B: Combination of datasets into probabilistic interactomes.  Part C

shows how we compared the probabilistic interactomes with the gold standards and our

new experimental data.  Numbers next to the arrows indicate which subsequent figures

refer to these various comparisons.
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Figure 2: Comparison of PIP and PIE with each other and with the individual

information sources.  Part A: the TP/FP ratio as a function of Lcut for the PIP and the

individual data from which it was computed.  The ratio is computed as follows:

TP(Lcut ) FP(Lcut ) = pos(L)
L>Lcut

∑ neg(L)
L>Lcut

∑

where pos(L) and neg(L) are the number of positives and negatives in the gold-standard

with a given likelihood ratio L.  The vertical line indicates our standard threshold Lcut =

600.  Part B shows the same plot as part A, but this time for the PIE.  Part C:

Comparison of TP/FP ratios between the PIP and PIE.  The abscissa represents the

sensitivity of the probabilistic interactomes.  The gray area indicates the gain of

sensitivity of the PIP over the PIE for equal TP/FP ratios. The arrow shows the difference

in sensitivity at TP/FP = 0.3.  At this level, the PIP contains 183,295 protein pairs, of

which 6,179 are gold-standard positives (75% sensitivity), whereas the PIE contains

31,511 protein pairs and 1,758 gold standard positives among these (21% sensitivity).

The white circles show the performance of a voting procedure in which each of the four

genomic features (from which we computed the PIP) contributed an additive vote.  There

are four possible outcomes in the additive voting procedure, depending on how many

datasets contribute a positive vote (19).
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Figure 3 shows representations of the thresholded PIP (de novo prediction)

compared with different datasets.  Part A shows the complete set of gold-standard

positives and their overlap with the PIP.  Here, the PIP (green) covers 27% of the

gold standard positives (yellow).   Part B shows a graph of the largest complexes

in the PIP, i.e., only those proteins in the thresholded PIP having ≥20 links.  On

the left, overlapping gold-standard positives are shown in green, PIE links in blue

and overlaps with both the PIE and gold-standard positives in black.  On the right,

overlapping gold-standard negatives are shown in red. Regions with many red

links indicate potential false-positive predictions.  Part C shows three PIP

complexes that we partially verified by TAP-tagging.  Each complex contains the

proteins linked to a central protein (gray) after thresholding the PIP at Lcut = 300.

Interactions verified by our TAP-tagging are shown in dark blue and PIE links in

light blue; black links indicate where TAP-tagging overlapped with PIE links.
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Figure 4: TP/FP for subsets of the thresholded PIP that only include proteins with a

minimum number of links.  Requiring a minimum number of links isolates large

complexes in the thresholded PIP graph (figure 3b).  Increasing the minimum number of

links raises TP/FP by preserving the interactions among proteins in large complexes,

while filtering out false positive interactions with heterogeneous groups of proteins

outside the complexes.
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Supplementary online material

Jansen et al. A Bayesian networks approach for predicting protein-protein interactions
from genomic data

Materials and methods

Datasets

Genomic features for computation of the PIP

mRNA expression

We use publicly available expression data, in particular, a time course of expression

fluctuations during the yeast cell cycle and the Rosetta compendium, consisting of the

expression profiles of 300 deletion mutants and cells under chemical treatments  (S1, S2).

This data can be used for the prediction of protein-protein interaction because proteins in

the same complex are often co-expressed (S3-S6).  We computed the Pearson correlation

for each protein pair for both the Rosetta and cell cycle datasets.  For predicting protein-

protein interactions, the Rosetta correlation and the cell cycle correlation represent

strongly correlated evidence (see discussion below).  We circumvented this problem by

computing the first principal component of the vector of the two correlations.  Then we

used this first principal component as one independent source of evidence for the protein-

protein interaction prediction.  This first principal component is a stronger predictor of

protein-protein interactions than either of the two expression correlation datasets by

themselves. We divided this first principal component of expression correlations into 19

bins.  For each bin we assessed its overlap with the gold-standard (table S1).
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Biological function

Interacting proteins often function in the same biological process (S7-S9).  This means

that two proteins acting in the same biological process are more likely to interact than

two proteins involved in different processes.

We collected information from two catalogs of functional information about proteins, the

MIPS functional catalog (S10) – which is separate from the MIPS complexes catalog --

and the data on biological processes from Gene Ontology (GO) (S11).  We used the

following procedure to quantify functional similarity between two proteins: We first

consider which set of functional classes two proteins share, given one of the functional

classification systems.  Then we count how many of the ~18 million protein pairs in yeast

share the exact same functional classes as well (yielding a count between 1 and ~18

million).  In general, the smaller this count, the more similar and specific is the functional

description of the two proteins, while large counts indicate a very non-specific functional

relationship between the proteins.  We found that low counts (i.e., high functional

similarity) correlate with a higher chance of two proteins being in the same complex

(table S1).

Essentiality

We considered whether proteins are essential or non-essential (S10).  It should be more

likely that both of two proteins in a complex are essential or non-essential, but not a

mixture of these two attributes.  This is because a deletion mutant of either one protein

should by and large produce the same phenotype: They both impair the function of the

same complex.  Indeed we find such a relationship supported by the data (table S1).
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Finally, in principle, our approach could have been extended to a number of other

features related to interactions (e.g. phylogenetic occurrence, gene fusions, gene

neighborhood) (S12-19).

Gold-standard

For the validation and prediction of protein complexes, we need to have reference

datasets that serve as gold-standards of positives (proteins that are in the same complex)

and negatives (proteins that do not interact).

For reliable data about existing protein complexes we took the MIPS complexes catalog

as a reference in its version from November 2001 (S10).  It consists of a list of known

protein complexes based on data collected from the biomedical literature (most of these

are derived from small-scale studies in contrast to the high-throughput experimental

interaction data (S7, S20-S24).  We only considered classes that contain single

complexes.  For instance, the MIPS class ‘translation complexes’ contains the subclasses

‘mitochondrial ribosome’, the ‘cytoplasmic ribosome’ and a number of other subclasses

related to translation-related complexes; we only considered pairs among proteins in

those subclasses as positives.  Overall, this yielded a filtered set of 8250 protein pairs that

are within the same complex.

There is no direct information about which proteins do not interact.  However, protein

localization data provides indirect information if we assume that proteins in different

compartments do not to interact.  We compiled a list of 2,691,903 protein pairs in
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different compartments from the current yeast localization data.  In compiling this list, we

attributed proteins to one of five compartments as has been done previously (S25-S27).

Ideally, the positive gold-standard and the negative gold-standard should be mutually

exclusive.  In practice, this is not precisely the case.  Of the 8,250 protein pairs in the

positive gold-standard, the subcellular localization is known for both proteins in 6,133

cases.  Of these 6,133 protein pairs, 124 intersect with the set of gold-standard negatives

(representing a fraction of 2% = 124/6,133).  This is very small compared to the

randomly expected size of the intersection (65%), which can be computed by randomly

shuffling the subcellular localization of the proteins in the positives set.  Thus, although

the gold-standard sets are not ideal, they provide a good practical approximation.

One reason for the small intersection between the gold-standards positives and negatives

is that some proteins change their subcellular localization.   Several of the 124 protein

pairs in the intersection are in transcription-factor complexes.  This is plausible, given

that transcription factors must be translated in the cytoplasm before they are transported

to the nucleus; thus, they are at least transiently located in the cytoplasm.

Computational methods (Bayesian networks)

The need for integrating data from a variety of sources has been emphasized recently in

computational biology (S26, S28-S30). Bayesian networks are particularly suitable for

the task of combining evidence from heterogeneous data sources (S31).

Bayesian networks are a representation of the joint probability distribution among

multiple variables (which could be datasets or information sources).  Formally, they can
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be described as follows (S32, S33):  We define as ‘positive’ a pair of proteins that are in

the same complex.  Given the number of positives among the total number of protein

pairs, the ‘prior’ odds of finding a positive are:

)(1

)(

)(

)(

posP

posP

negP

posP
Oprior −

==

In contrast, the ‘posterior’ odds are the odds of finding a positive after we consider N

datasets with values f1 … fN:
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(The terms ‘prior’ and ‘posterior’ refer to the situation before and after knowing the

information in the N datasets.)

The likelihood ratio L defined as
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relates prior and posterior odds according to Bayes' rule:

priorNpost OffLO )...( 1=

In the special case that the N features are conditionally independent (i.e., they provide

uncorrelated evidence), the Bayesian network is a so-called ‘naïve’ network, and L can be

simplified to:
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L can be computed from contingency tables relating positive and negative examples with

the N features (by binning the feature values f1 … fN into discrete intervals, see table S1

and table S2).  Determining the prior odds Oprior is somewhat arbitrary in that it requires

an assumption about the number of positives.  However, based on previous estimates

(S34-S37) we think that 30,000 positives is a conservative lower bound for the number of

positives (i.e., pairs of proteins that are in the same complex).  Given that there are

approximately 18 million protein pairs in total, the prior odds would then be about 1 in

600.  With L > 600 we would thus achieve Opost > 1.

In the naïve Bayesian network the assumption is that the different sources of evidence

(i.e., our datasets with information about protein complexes) are conditionally

independent.  Conditional independence means that the information in the N datasets is

independent given that a protein pair is either positive or negative.  We have tested this

criterion for the different datasets using scatterplots and have found that they are largely

conditionally uncorrelated (S38).  The only exceptions are the two datasets of expression

correlations.  (We described above how we circumvented this problem.)

Surprisingly, the two datasets of functional similarity, derived from the MIPS and GO

functional catalogs, were also for the most part conditionally independent.  We would

have expected that the quantification of functional similarities would yield similar results

for both catalogs; this, however, was not the case, such that we can basically treat each

data source as conditionally independent evidence.

The PIE and PIP data turned out to be conditionally independent, such that they could be

combined in a naïve Bayesian fashion to form the PIT.
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From a computational standpoint, the naïve Bayesian network is easier than the fully

connected network.  The more conditional independence relationships there are between

variables, the easier it is generally to compute the parameters in a Bayesian network.

Experimental methods (TAP-tagging)

Frozen cell pellets from 3 L yeast cultures grown in YPD medium to an OD600 of 1.0-1.5

were broken with dry ice in a coffee grinder.  Tagged complexes were purified on IgG

and calmodulin columns from extracts as previously described (S39), except that the

buffers for the calmodulin column contained no detergent and the elution buffer for the

calmodulin column contained 100 mM ammonium bicarbonate in place of 100 mM

NaCl.  The purified proteins were separated by sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE) on gels containing 10% polyacrylamide and the proteins

were visualized by silver staining.  The protein bands were reduced, alkylated and

subjected to in-gel tryptic digestion.  Peptide samples were then spotted onto a target

plate with a matrix of α-cyano-4-hydroxycinnamic acid (Fluka).  MALDI TOF mass

spectrometry analysis was conducted utilizing a Reflex IV (Bruker Daltonics, Billerica,

MA) instrument in positive ion reflectron mode.  For LC-MS/MS, a portion of the

purified protein preparation was concentrated by evaporation and resuspended in 100mM

NH4HCO3/1mM CaCl2 buffer, pH 8.5 and digested overnight at 37°C with 2mL of

immobilized Poros trypsin beads (PerSeptive).  The entire digest was fractionated as

described (S40) on a 7.5 cm (100 um ID) reverse phase C18 capillary column attached in-

line to a ThermoFinnigan LCQ-Deca ion trap mass spectrometer by ramping a linear

gradient from 2 to 60% solvent B in 90 min.  Solvent A consisted of 5% acetonitrile,
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0.5% acetic acid and 0.02% HFBA and solvent B consisted of 80:20 acetonitrile/water

containing 0.5% acetic acid and 0.02% HFBA.  The flow rate at the tip of the needle was

set to 300 nL/min by programming the HPLC pump and using a split line.  The mass

spectrometer cycled through four scans as the gradient progressed.  The first was a full

mass scan followed by successive tandem mass scans of the three most intense ions.  A

dynamic exclusion list was used to limit collection of tandem mass spectra for peptides

that eluted over a long period of time.  All tandem mass spectra were searched using the

SEQUEST computer algorithm against a complete yeast protein sequence database

(6/2000).  Each high-scoring peptide sequence was evaluated using STATQUEST (S41)

with the corresponding tandem mass spectrum to determine the probability of each

match.

Comparison of Bayesian networks with voting

A simpler integration method than Bayesian networks would be a voting procedure, in

which each dataset contributes an additive vote towards classification of a protein pair as

positive.  One can compute likelihood and TP/FP ratios depending on how many datasets

agree.  One extreme of this procedure is to accept every protein pair as positive that has at

least one vote (i.e., the union of all datasets, OR rule), whereas the other extreme is to

limit positives to only those pairs that have votes from all datasets (i.e., the intersection,

AND rule).  Both approaches have previously been applied to protein-protein interaction

data (S7, S42, S43).
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Comparison of voting with the PIP

One limitation of a voting procedure is that it requires the input datasets to be binary in

format, meaning that a protein interaction is either ‘present’ or ‘absent’ in a dataset.

‘Present’ can then be counted as a positive vote in a voting procedure.

The situation is different for the datasets that we used for our de novo prediction (PIP).

For instance, the mRNA expression dataset contains expression correlations of protein

pairs that range on a continuous scale from –1.0 to +1.0.  In order to transform these data

into binary format, it is necessary to first set an arbitrary cutoff value (for instance, such

that correlations greater than 0.7 can be counted as a positive vote).  Similarly, the GO

process dataset and the MIPS function dataset are not binary in that they contain integer

values ranging between 1 and ~18,000,000, representing the similarity of function; in the

essentiality dataset, there are three different values.  We tried different combinations of

cutoffs and then compared the results with the performance of the Bayesian network

(figure S1).

Loss of information in the voting procedure

The setting of cutoffs to transform the datasets used in the de novo prediction into a

binary format naturally involves a loss of information.  Another complication of the

voting procedure is that different cutoffs change the results of the voting procedure, but

there is no immediately obvious procedure for setting cutoffs in an optimal fashion.

Given that the Bayesian network can take into account the full information contained in

the input datasets, it is not surprising that it exhibits a better prediction performance than
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the voting procedure.  The Bayesian network can accommodate datasets of multiple

formats, such as those containing continuous variables and other non-binary formats.

Treatment of data sources with different reliability

An additional advantage of the Bayesian network over the voting procedure is that it is

inherently probabilistic in nature.  This lets it easily handle data sources of unequal

reliability, whereas simple voting can only give equal weighting to each source.

Comparison of voting with the PIE

Since the four experimental protein-protein interaction datasets that make up the PIE

have binary format, it is very straightforward to apply a voting procedure to them.

The advantages of the Bayesian network are less obvious in this situation, although it

provides a more fine-grained way of combining the data and tends to have a slightly

higher sensitivity for a given level of accuracy than the voting procedure (figure S2).

This is because the different subsets can overlap quite differently with the positives and

negatives of the gold standards, even if the number of datasets agreeing with each other is

the same.  For instance, among the subset of protein pairs that are present in the two

large-scale two-hybrid datasets (S7, S20-S22), but not the two in-vivo pull-down datasets

(S23, S24), 6 overlap with the positives and 23 with the negatives in the gold-standards.

Conversely, for the subset of proteins that are only present in two pull-down datasets, the

corresponding numbers are 337 positives and 209 negatives in the gold-standards (table

S2).
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In summary, the Bayesian network performed slightly better than voting procedure with

regard to the PIE.  In the de novo prediction (PIP), the accuracy of the Bayesian network

was about an order of magnitude higher than that of the voting procedure. Since the

Bayesian network can take into account more of the information that is contained in the

input datasets than the voting procedure, the advantages of the Bayesian network are

more evident in a situation where the input datasets are non-binary.

Mitochondrial ribosome

One of the large complexes found in the thresholded PIP is the mitochondrial ribosome

(figure 3b).  Figure S3 shows this complex in more detail.  The de novo prediction

overlapped with data from both the gold-standard and the PIE, but, in addition, the de

novo prediction added three proteins to this complex (MEF1, YNL081C, and

YGL068W).  MEF1 is a translation elongation factor and should thus be transiently

associated with the mitochondrial ribosome (S44).  For the other two proteins there is no

direct experimental evidence of their function.  However, the sequence of YNL081C is

40% identical to a 30S ribosomal subunit in Thermus thermophilus (S45, S46) and the

sequence of YGL068W is 52% identical to the L7/L12 ribosomal protein in E. coli (S47).

Therefore, our predictions for YGL068W and YNL081C seem to provide another level of

evidence for annotation of these proteins as mitochondrial ribosomal proteins.



Figures and tables

Figure S1: Comparison of voting and Bayesian network applied to the

PIP

Part A: Schematized for simplicity. Part B: Actual data (in the same framework for

comparison).  We measure prediction performance in two ways: first, in terms of

sensitivity, represented on the abscissa -- the fraction of true positives (TP) among the

positives in the gold standard reference (P = TP + FN) – and, second, the ratio of true to

false positives (TP/FP), represented on the ordinate.  The sensitivity is a measure of

coverage and the TP/FP ratio a measure of accuracy of the prediction methods.

Part A: The black dots represent the outcomes of a particular voting procedure, while the

solid line represents the results of the Bayesian network.  Note that the voting procedure

leads to four discrete outcomes.  This is because the input datasets need to be transformed

into a binary format for the voting procedure (“positive vote” or “no vote”).  The

Bayesian network does not require such a coarse transformation of the input datasets, but

can take more of the information into account, leading to a more continuous set of results.

Part B: Since different cutoffs affect the results of the voting procedure, we computed

the results for a range of different cutoff sets (a ‘cutoff set’ contains the four cutoffs

applied to each of the four input datasets).  Each cutoff set produces four different

outcomes that are represented by the same color.  Solid lines enclose regions of the same

number of votes.  Gray dots represent the Bayesian network results.  The Bayesian

network has a larger set of possible outcomes (reflecting the fact that it takes into account



more of the input information), leading to improved prediction.  For instance, at 50%

sensitivity, the Bayesian network has a TP/FP ratio that is about an order of magnitude

greater than that of a voting procedure.
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Figure S2: Comparison of voting and Bayesian network applied to PIE

Sensitivity and TP/FP ratio of the voting procedure and those of the fully connected

Bayesian network we used for computing the PIE.  The simplest case of a voting

procedure is the ‘OR’ rule, in which a protein pair needs to be in only dataset to be

classified as positive.  The most stringent case is the ‘AND’ rule, in which a protein pair

needs to be in all datasets to be classified as a positive.
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Figure S3: Mitochondrial ribosome

Proteins in the mitochondrial ribosome overlapping with: (i) the gold standard positives

(MIPS complexes catalog), (ii) the PIE  and (iii) the PIP, which encompasses the data

from both (i) and (ii).  Blue nodes represent proteins present in each of the three sets,

whereas the three orange proteins appeared only in the PIP.



Figure S3

i) Gold-standard positives ii) Links in PIE

iii) thresholded PIP links



Table S1: Parameters of the naïve Bayesian network (PIP)

The first column describes the genomic feature. Protein pairs in the essentiality data can

take on three discrete values (EE, both essential; NN, both non-essential; and NE, one

essential and one not), while the values for mRNA expression correlations range on a

continuous scale between –1.0 and +1.0; functional similarity counts are integers between

1 and ~18 million.  We binned the mRNA expression correlation values into 19 bins and

the functional similarity counts into 5 bins. The second column gives the number of

protein pairs with a particular feature value (i.e., ‘EE’) drawn from the whole yeast

interactome (~18M pairs). Columns ‘pos’ and ‘neg’ give the overlap of these pairs with

the 8,250 gold-standard positives and 2,708,746 gold-standard negatives. The final three

columns give the conditional probabilities and the likelihood ratio L.



Table S1

pos neg
EE 301,088            1,114             81,924           5.18E-01 1.43E-01 3.63
NE 2,481,701         624                285,487         2.90E-01 4.98E-01 0.58
NN 4,771,865         412                206,313         1.92E-01 3.60E-01 0.53

7,554,654         2,150             573,724         1.00E+00 1.00E+00 1.00

pos neg
0.9 617                   16                  45                  2.10E-03 1.68E-05 124.93
0.8 4,127                137                563                1.80E-02 2.10E-04 85.50
0.7 14,979              530                2,117             6.96E-02 7.91E-04 87.97
0.6 36,145              1,073             5,597             1.41E-01 2.09E-03 67.36
0.5 81,102              1,089             14,459           1.43E-01 5.40E-03 26.46
0.4 189,369            993                35,350           1.30E-01 1.32E-02 9.87
0.3 444,757            1,028             83,483           1.35E-01 3.12E-02 4.33
0.2 1,016,105         870                183,356         1.14E-01 6.85E-02 1.67
0.1 2,205,895         739                368,469         9.71E-02 1.38E-01 0.70
0 8,118,256         894                1,244,477      1.17E-01 4.65E-01 0.25
-0.1 2,345,009         164                408,562         2.15E-02 1.53E-01 0.14
-0.2 1,038,181         63                  203,663         8.27E-03 7.61E-02 0.11
-0.3 399,554            13                  84,957           1.71E-03 3.18E-02 0.05
-0.4 131,361            3                    28,870           3.94E-04 1.08E-02 0.04
-0.5 40,759              2                    8,091             2.63E-04 3.02E-03 0.09
-0.6 15,289              -                2,134             0.00E+00 7.98E-04 0.00
-0.7 6,795                -                807                0.00E+00 3.02E-04 0.00
-0.8 1,886                -                261                0.00E+00 9.76E-05 0.00
-0.9 55                     -                12                  0.00E+00 4.49E-06 0.00

16,090,241       7,614             2,675,273      1.00E+00 1.00E+00 1.00

pos neg
1 -- 9 6,584                171                1,094             2.12E-02 8.33E-04 25.50
10 -- 99 25,823              584                4,229             7.25E-02 3.22E-03 22.53
100 -- 1000 88,548              688                13,011           8.55E-02 9.91E-03 8.63
1000 -- 10000 255,096            6,146             47,126           7.63E-01 3.59E-02 21.28
10000 -- Inf 5,785,754         462                1,248,119      5.74E-02 9.50E-01 0.06

6,161,805         8,051             1,313,579      1.00E+00 1.00E+00 1.00

pos neg
1 -- 9 4,789                88                  819                1.17E-02 1.27E-03 9.22
10 -- 99 20,467              555                3,315             7.38E-02 5.14E-03 14.36
100 -- 1000 58,738              523                10,232           6.95E-02 1.59E-02 4.38
1000 -- 10000 152,850            1,003             28,225           1.33E-01 4.38E-02 3.05
10000 -- Inf 2,909,442         5,351             602,434         7.12E-01 9.34E-01 0.76

3,146,286         7,520             645,025         1.00E+00 1.00E+00 1.00

Gold standard overlap

Gold standard overlap
P(GO|pos) P(GO|neg)

Essentiality

V
al
ue
s

V
al
ue
s

V
al
ue
s

V
al
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s

GO biological process similarity

Expression correlation

Sum

Sum

Sum

Sum

L# protein pairsMIPS function similarity P(MIPS|pos) P(MIPS|neg)

# protein pairs L

LP(exp|neg)P(exp|pos)# protein pairs
Gold standard overlap

# protein pairs P(Ess|pos) P(Ess|neg) L
Gold-standard overlap



Table S2: Calculation of the PIE

The actual computation for the fully connected Bayesian network is simple: The four

binary experimental interaction datasets (S7, S20-S23) can be combined in at most 24 =

16 different ways (subsets). For each of these 16 subsets, we can compute a likelihood

ratio. The format of the table follows that of table S1.



Table S2

pos neg
0 0 0 0 2702284 6389 2695949 7.74E-01 9.95E-01 0.8
0 1 0 0 23275 87 5563 1.05E-02 2.05E-03 5.1
0 0 0 1 4102 11 644 1.33E-03 2.38E-04 5.6
0 0 1 0 730 5 112 6.06E-04 4.13E-05 14.7
1 0 0 0 29221 1331 6224 1.61E-01 2.30E-03 70.2
0 0 1 1 123 6 23 7.27E-04 8.49E-06 85.7
0 1 0 1 39 3 4 3.64E-04 1.48E-06 246.2
0 1 1 0 29 5 5 6.06E-04 1.85E-06 328.3
0 1 1 1 16 1 1 1.21E-04 3.69E-07 328.3
1 1 0 0 1920 337 209 4.08E-02 7.72E-05 529.4
1 0 1 0 34 12 5 1.45E-03 1.85E-06 788.0
1 1 0 1 27 16 3 1.94E-03 1.11E-06 1751.1
1 0 1 1 22 6 1 7.27E-04 3.69E-07 1970.0
1 1 1 1 11 9 1 1.09E-03 3.69E-07 2955.0
1 0 0 1 53 26 2 3.15E-03 7.38E-07 4268.3
1 1 1 0 16 6 0 7.27E-04 0.00E+00 -

LGavin 
(g)

Ho 
(h)

Uetz 
(u)

Ito 
(i)

Gold-standard overlap# protein 
pairs

P(g,h,u,i | pos) P(g,h,u,i | neg)
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