
Integrative Data Mining:
The New Direction in
Bioinformatics
Machine Learning for Analyzing Genome-Wide Expression
Profiles and Proteomics Data Sets

Biological research is becoming increas-
ingly database driven, motivated, in

part, by the advent of large-scale func-
tional genomics and proteomics experi-
ments such as those comprehensively
measuring gene expression. These pro-
vide a wealth of information on each of
the thousands of proteins encoded by a ge-
nome. Consequently, a challenge in
bioinformatics is integrating databases to
connect this disparate information as well
as performing large-scale studies to col-
lectively analyze many different data sets.
This approach represents a paradigm shift
away from traditional single-gene biol-
ogy, and it often involves statistical analy-
ses focusing on the occurrence of
particular features (e.g., folds, functions,
interactions, pseudogenes, or localiza-
tion) in a large population of proteins.
Moreover, the explicit application of ma-
chine learning techniques can be used to
discover trends and patterns in the under-
lying data. In this article, we give several
examples of these techniques in a
genomic context: clustering methods to
organize microarray expression data, sup-
port vector machines to predict protein
function, Bayesian networks to predict
subcellular localization, and decision
trees to optimize target selection for
high-throughput proteomics.

Biological Research Is
Database Oriented

Databases have defined the information
structure of molecular biology for over a
decade, archiving thousands of protein and
nucleotide sequences and three-dimen-
sional (3-D) structures. As large-scale
genomics and proteomics move to the fore-
front of biological research, the role of da-
tabases has become more significant than

ever. The current landscape of biological
databases includes large public archives,
such as GenBank, DDBJ, and EMBL for
nucleic acid sequences [1]; PIR and
SWISS-PROT for protein sequences [2];
and the Protein Data Bank for 3-D protein
structure coordinate sets [3]. Another
source of sequence data is dbEST [4], a di-
vision of GenBank storing expressed se-
quence tags (ESTs) from cell lines, which
provide information about gene expression
in various tissues. Databases such as these
have been steadily accumulating gene se-
quences and protein structures for more
than a decade, which are submitted on a
per-instance basis from disparate laborato-
ries in the biological sciences community.

In addition to these general reposito-
ries of biomolecular data, specialized sys-
tems have been developed that extend its
interpretation by providing a context for
individual sequences and structures. The
SCOP, CATH, and FSSP [5] databases
classify proteins based on structural simi-
larity, Pfam and ProtoMap [6] identify
families of proteins based on sequence
homology, while PartsLis t and
GeneCensus [7] give dynamic reports on
the occurrence of protein families in vari-
ous genomes. Databases have also been
developed to provide comprehensive ac-
cess to sequence, expression, and func-
tional data for all the known genes of
specific model organisms [8].

Integration of Databases and
Large-Scale Surveys

In addition to sequence and structure
databases, many diverse experimental data
sets have been compiled that focus on vari-
ous aspects of protein function. However,
these need to be related with other data in
order to be placed in a useful context, as in-
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dividual bits of information are relatively
meaningless outside of this wider scope.
For example, an experiment measuring
high mRNA copy number for the human
gene J00068 carries little intrinsic value
until one associates this fact with the
gene’s functional classification, learning
that it codes for the protein actin, an abun-
dant component of skeletal muscle.

The scale of genomics research precludes
the traditional single-molecule approach in
biology, where all the experimental knowl-

edge about a given protein could be obtained
through reading the literature. Integrative da-
tabase analysis and data mining are essential
aspects of modern biology, enabling the syn-
thesis of large-scale portraits of genome
function.

In practice, data mining often takes the
form of statistical surveys, in the sense of
demographic censuses, of different popu-
lations of genes and proteins. The goal in
this analysis is to identify certain out-
standing features possessed by a given
population. For instance, large-scale sur-
veys have been used to characterize the
features of pseudogenes (inactive pro-
tein-coding regions) in the worm genome
[9], correlate the levels of protein expres-
sion with subcellular localization [10], ex-
amine the relationship between protein
structure with function [11-12], and mea-
sure the composition of protein folds in
complete genomes [13-14]. Bioinfor-
matics researchers conducting integrative
database surveys face the challenge of
merging genomics data from many differ-
ent sources into a common framework.
Therefore, the development of standards
al lowing federated databases to
interoperate is essential.

Functional Genomics
and Microarray Technology

With the introduction of complete ge-
nome sequences, much comprehensive
functional analysis has been done on the
proteins encoded by an organism’s genome.
The sequence determination phase of

genomics offers only a fraction of the
analytical possibilities. Many functional ex-
periments can be performed using that data,
and countless opportunities exist to relate
those experimental results with other prop-
erties via integrative database analysis.

Among the experimental techniques
available for genome-wide analysis are
gene disruption [15], two-hybrid studies
[16], large-scale proteomics [17], silicone
elastomer protein chips [18], serial analy-
sis of gene expression (SAGE) [19], and
various DNA microarray technologies.
Of these, microarrays have become par-
ticularly popular due to the highly parallel
nature of the experiments and the inherent
homogeneity of the data captured. Using
array technologies , immobil ized
oligonucleotide fragments having known
sequences are exposed to fluores-
cence-labeled DNA probes, and the sig-
nals corresponding to hybridized
fragments are scanned and quantified
[Fig. 1(a)]. A number of these systems
have been devised, allowing the simulta-
neous interrogation of thousands of genes
in a single experiment. Due to the recent
sequencing of complete genomes, labora-
tories are using these array technologies
to generate expression data on a scale that
most researchers would have considered
nearly impossible just a few years ago.

To construct the array shown in Fig.
1(a), DNA fragments of known sequence
are immobilized to each array element.
Messenger RNA transcripts from cell ex-
tracts are reverse-transcribed and labeled
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1. (a) Scanned image of a cDNA microarray (see text for details). (b) Hierarchical clustering techniques applied to microarray
expression data, adapted from [24] (see text for details).  (c) Double-clustering of disruption phenotype data using k-means and
hierarchical methods [15] (see text for details).
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with the fluorophore cyanine-5, serving as
hybridization probes. Total genomic
DNA is labeled with cyanine-3 and hy-
bridized to all the array elements as a neg-
ative control. The two signals are
generated separately with a laser using
different excitation wavelengths (633 and
543 nm, respectively), and the emissions
are scanned and quant i f ied via
densitometry. Changes in gene expres-
sion are measured as the normalized ratios
between mRNA level and background
signal for each array element. The image
is false-colored after scanning; here,
genes that are up-regulated are shown in
red, while genes that are down-regulated
appear green. In this way, differential ex-
pression of thousands of genes can be
quantified simultaneously.

Microarray technologies include
cDNA arrays [20] and high-density
oligonucleotide systems, such as
GeneChips [21] and intergenic DNA ar-
rays [22]. Each of these methods is de-
signed to capture a different type of
information. GeneChips and cDNA ar-
rays enable genome-wide expression
monitoring by measuring mRNA copy
number under various cellular conditions,
compiling an expression profile for many
genes at incremental time points. cDNA
microarrays measure gene expression as
the difference in signal strength between
reverse-transcribed mRNA levels from
cells under various conditions. This dif-
ference is given relative to a reference
value, which yields a ratio for every target
gene under investigation. Conversely,
GeneChips measure the absolute expres-
sion levels of mRNA transcripts, in num-
ber of copies per cell.

Intergenic DNA arrays are an emerging
technology, involving the construction of
high-density oligonucleotide chips that are
probed with DNA fragments captured via
chromatin immunoprecipitation (some-
times referred to as ChIP chips).
DNA-binding proteins, complexed with
their cognate recognition sequences, are
sequestered from cell extracts with anti-
body-bound beads. The DNA is then iso-
lated and used to probe the array,
hybridizing to elements containing com-
plementary nucleotide sequences. In ex-
periments where transcription
factor-bound DNA is used to interrogate a
microarray containing intergenic se-
quences, sites of transcription factor bind-
ing can be identified across an entire
genome [22]. Evidence of putative gene
expression accumulates when both cDNA

and ChIP-derived probes are hybridized to
identical arrays and comparisons are made
between differential mRNA levels and up-
stream sites of transcription factor binding.
Combined with existing expression analy-
sis methods, this location data can be used
to assemble a more comprehensive picture
of large-scale genetic function.

Machine Learning Approaches
to Genomic Data Analysis

Unsupervised Learning
and Clustering

A general problem in data analysis is
how to structure information into mean-
ingful taxonomies or categories. This is-
sue is of great importance when trying to
infer relationships in diverse biological
data sets. Statistical methods for finding
trends and patterns in experimental results
have played a large role in their interpreta-
tion. Principal component analysis (PCA)
can be an effective method of identifying
the most discriminating features in a data
set. This technique usually involves find-
ing two or three linear combinations of the
original features that best summarize the
types of variation in the data. If much of
the variation is captured by these two or
three most significant principal compo-
nents, class membership of many data
points can be observed.

Several approaches to this problem
employ unsupervised learning to find
these categories; that is, no a priori in-
formation is required, and generally, no
feedback is given to the model to adjust
its performance. Unsupervised learning
enables pattern discovery by organizing
data into clusters, using recursive parti-
tioning methods. The k-means algo-
rithm is a popular instance-based
method of cluster analysis. The algo-
rithm partitions data into a predeter-
mined number of categories as instances
are examined, according to a distance
measure (e.g., Euclidean). Category
centroids are fixed at random positions
when the model is initialized, which can
affect the clustering outcome.

The self-organizing feature map
(SOM) [23] consists of a neural network
whose nodes move in relation to cate-
gory membership. As with k-means, a
distance measure is computed to deter-
mine the closest category centroid. Un-
l ike k -means , th i s ca t egory i s
represented by a node with an associated
weight vector. The weight vector of the
matching node, along with those of
neighboring nodes, are updated to more

closely match the input vector. As data
points are clustered and category cen-
troids are updated, the positions of
neighboring nodes move in relation to
them. The number of network nodes that
constitute this neighborhood typically
decrease over time.

While both algorithms require the
number of clusters to be empirically cho-
sen, the SOM algorithm overcomes some
limitations of k-means by imposing
global relationships between clusters,
thereby improving interpretability. Like
PCA, the SOM is capable of reducing
high-dimensional data into a 1- or 2- di-
mensional representation. The algorithm
produces a topology-preserving map,
conserving the relationships among data
points. Thus, although either method
may be used to effectively partition the
input space into clusters of similar data
points, the SOM can also indicate rela-
tionships between clusters.

Supervised Learning
and Classification

Analysis of large data sets that contain
diverse information often involves the ex-
plicit application of supervised learning.
This generally involves dividing the data
set features into two categories: predic-
tors, or features in a data set that are rele-
vant for learning, and the response
variable, or property to be classified.
Given the heterogeneous information pre-
sented by integrated bioinformatics data-
bases, a number of potential correlations
between predictors and response vari-
ables may be discovered, depending on
the subset of features used and the classifi-
cations sought after.

Machine learning can be applied to a
wide variety of biological information,
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both to partition the data into categories
and to classify previously unseen exam-
ples. Supervised learning is conducted in
two phases: training and testing the classi-
fier model. Using this strategy, the data set
is divided into two mutually exclusive
sets. The first set is used to train the
model, where correct classifications/re-
sponses of the input examples are known a
priori. This information is used to im-
prove the performance of the model and
reduce the classification error rate, a pro-
cess that incrementally adjusts an n-di-
mensional hyperplane that serves to
partition the data set into categories. Af-
terward, unseen instances in the test set
are classified according to the partitioning
established during the training phase.

Classification Performance versus
Ease of Interpretation

For biological research applications,
interpretability of results is a key factor in
selecting a particular machine learning
method. By deciphering the mapping be-
tween points in feature space and learned
categories, one can apply classification
results in a practical context. The ability to
decipher this mapping depends largely
upon the internal representation used by a
particular algorithm. For example, deci-
sion trees are quite useful in this respect,
because rules can be extracted from the
tree that discriminate amongst classes.
Backpropagation neural networks, while

useful classifiers, employ a numerical
weight matrix to establish nonlinear
mappings that can be difficult to interpret.

Biological Data Mining Applications
Organizing Microarray Data

Clustering algorithms are being ap-
plied to microarray data sets with increas-
ing regularity; they are often incorporated
into microarray image analysis software
and are therefore frequently used to visu-
alize local and global relationships among
hybridization signals captured by the ar-
ray. Currently, hierarchical clustering is
the most popular technique employed for
microarray data analysis [24]. Hierarchi-
cal methods are based on building a dis-
tance matrix summarizing all the pairwise
similarities between expression profiles
and then generating cluster trees (also
called dendrograms) from this matrix.
Genes that appear to be co-expressed at
various time points are positioned close to
one another in the tree, whose branch
lengths represent the degree of similarity
between expression profiles.

Agglomerative methods such as
k-means and self-organizing maps have
also been used to cluster microarray data.
The SOM algorithm has been applied to
identify cell differentiation patterns and
distinguish between cancer cell types via
array expression profiling [25]. Using
both hierarchical and neighborhood anal-
ysis techniques, genes exhibiting similar
mRNA levels tend to cluster together, re-
vealing patterns in gene expression data
[Figure 1(b)]. In this software display,
microarray intensity values are depicted
as colored blocks, where rows represent
individual genes, and columns corre-
spond to incremental time points when
successive experiments were performed.
Thus, each row constitutes an expression
profile for a given gene. Red blocks indi-
cate high mRNA levels, green blocks in-
dicate low levels. The data was organized
via hierarchical clustering to group genes
with related expression profiles.

While useful visualization tools, the an-
alytical utility of either type of clustering
approach is limited in terms of interpreting
microarray results. These techniques serve
to group data points based on changes in
mRNA levels under various cellular condi-
tions. Although cluster membership of re-
lated data points can indicate co-
expression or co-repression of the genes
they represent, the existence of common
regulatory pathways based on partitioning
expression profiles remains speculative in

the absence of external information. Addi-
tionally, there is no reason to believe that
co-expressed genes are evolutionarily re-
lated as hierarchical ordering might imply.

Partitioning Phenotype Data with
Multiple Clustering Techniques
Where appropriate, clustering meth-

ods can be combined to establish a
multitiered partitioning of a data set. An
example of this approach is the tandem
use of k-means clustering with hierarchi-
cal clustering as applied to genome-wide
phenotypic analysis [15]. Yeast cells con-
taining transposon insertions were sorted
with the k-means algorithm based on
growth conditions, to produce clusters of
genes with similar phenotypes. The same
data was then ordered hierarchically, pro-
ducing trees of experimental assays, and
clustering those which yield trans-
formants with shared phenotypes [Fig.
1(c)]. Using this method, assays can be
identified that are capable of selecting
functionally related genes.

In Fig. 1(c), both examples of hierar-
chical clustering use the Pearson coeffi-
cient to measure similarity between gene
expression profiles. Given two normal-
ized expression ratio profiles, the
Pearson correlation coefficient is given
by the dot product

R
N

ij i j=
−

⋅1

1
X X

where N is the number of elements repre-
sented by the profiles Xi and X j . The mea-
surement expression ratio profile x can be
used to compute a Z-score from the normal-
ized profile X with the following equation

X k
x k x

x

( )
( )

=
− avg

σ

where X(k) and x(k) are the kth compo-
nents of the profiles X and x, respectively,
xavg is the average, and σ x is the standard
deviation of values in x. The correlation
coefficient matrix R can then be computed
for a group of genes, where each matrix el-
ement Rij corresponds to the Pearson cor-
relation coefficient between genes i and j.
The average correlation coefficient Ravg is
found by averaging the elements of R, in-
cluding the diagonal. This statistic indi-
cates the overall similarity of the
expression profiles in a group of genes.

Classifying Gene Function with
Support Vector Machines

An example of a supervised learning
method applied to functional genomics
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data is the use of support vector machines
(SVMs) to classify yeast ORFs into several
functional categories by correlating
mRNA expression with prior knowledge
of gene function [26]. The SVM maps an
n-dimensional input space onto a
higher-dimensional feature space, simulta-
neously transforming a nonlinear class
boundary into a simple hyperplane. The
new feature space is embodied as a set of
nonlinear combinations of the original fea-
tures. If we consider a dataset whose points
are linearly separable in the new feature
space, their corresponding convex hulls
(the tightest enclosing convex polygons)
do not overlap. The maximum margin
hyperplane is defined as the hyperplane
that is maximally distant from both convex
hulls; this will bisect the shortest line con-
necting them. The data points closest to the
maximum margin hyperplane are called
support vectors and uniquely define the
maximum margin hyperplane (the mini-
mum number of support vectors from each
class is one). Finding the support vectors
and the parameters that determine the max-
imum margin hyperplane can be accom-
plished with a standard constrained
quadratic optimization scheme.

To apply the SVM for gene classifica-
tion, a set of examples was assembled
containing genes of known function,
along with their corresponding micro-
array expression profiles. The SVM was

then used to predict the functions of
uncharacterized yeast ORFs based on the
expression-to-function mapping estab-
lished during training. Supervised learn-
ing techniques appear to be ideal for this
type of functional classification of
microarray targets, where sets of positive
and negative examples can be compiled
from genomic sequence annotations.

Predicting Subcellular
Localization with Bayes’ Rules
Bioinformatics data mining often in-

volves the aggregation of proteomic data
from multiple sources, followed by the
application of machine learning tech-
niques to identify or predict various
macromolecular properties from these
features. One such application of this
strategy was the assignment of thousands
of proteins in the yeast genome to the
subcellular compartments to which they
are most likely transported [27]. In this
study, gene expression levels from a num-
ber of SAGE, GeneChip, and cDNA
microarray experiments were accrued and
cross referenced with protein localization
information from public databases. Each
protein was first assigned a default proba-
bility of being localized to one of several
compartments. These were then updated
using a Bayesian system that incorporates
a number of external features to arrive at
probabilities for the localization of each

protein [Fig. 2(a)]. Training the model on
a set of examples for which this informa-
tion is known made possible the predic-
tion of the localization of unknown
proteins. This analysis also enabled the
elucidation of the relationships between
expression and compartmental localiza-
tion, with cytosolic proteins being highly
expressed, and nuclear and mem-
brane-related proteins exhibiting lower
expression levels [Fig. 2(b)].

In Fig. 2(a), the charts depict the state
vector for a protein m, representing the
distribution of probabilities of protein m
localizing to various subcellular compart-
ments. Bar graphs illustrate the vectors for
each feature considered. The prior state
for a given protein is sequentially updated
with Bayes’ rule using feature vectors that
represent different attributes of the pro-
tein (e.g., NLS = nuclear localization sig-
nal sequence, GLY = glycosylation site);
e.g.,

( )
( )

Pm Pm

P Z

C feature C

feature C

| ( )

| /

=

×

where Z is a normalization factor equal
to the product of the fraction of proteins
localized in each compartment (C) hav-
ing a particular feature, and the prior
probability of protein m being trans-
ported to that compartment, summed
over all compartments:
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2. (a) Bayesian system for predicting subcellular localization [27]. Charts depict the state vector for a protein m, representing the
distribution of probabilities of protein m localizing to various subcellular compartments. Bar graphs illustrate the vectors for each
feature considered. (b) Total predicted compartmental populations for the yeast genome. Estimates are calculated according to the
distribution of a population vector, obtained by summing the probability state vectors of all the proteins considered.
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C
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The predicted compartment for each pro-
tein is indicated by the probability distri-
bution of the final state vector. In Fig.
2(b), estimates are calculated according to
the distribution of a population vector, ob-
tained by summing the probability state
vectors of all the proteins considered.

Using Decision Trees to Optimize
High-Throughput Proteomics

The future of biological databases will
likely include systems that are specifi-
cally designed to capture data in a format

that facilitates retrospective analysis. This
requires careful standardization of experi-
mental parameters, thereby rendering the
data amenable to subsequent computa-
tion. As discussed above, computing tech-
niques are readily applied to microarray
results, partially due to the inherent homo-
geneity of these data sets. Similarly, a goal
in the fusion of databases with data min-
ing applications is to standardize highly
divergent data sets as much as possible,
making them accessible to machine learn-
ing algorithms.

Recently, a combined approach was
developed to facilitate distributed collab-
oration among many laboratories using a
shared database system and to subse-
quently predict macromolecular proper-
ties from structural proteomics data via
decision tree analysis [28]. Experimental
parameters for protein cloning, purifica-
tion, biophysical characterization, NMR,
and X-ray crystallization were recorded in
a database. These values were standard-
ized across many laboratories and institu-
tions, providing a common data format for
retrospective analysis. Using the database
to generate training sets for supervised
learning, decision trees [29] were used to
classify proteins as either soluble or insol-
uble, based on features of their amino acid
sequences. Useful rules relating these fea-
tures with protein solubility were then de-
termined by tracing the paths through the
decision trees (Fig. 3). Protein solubility
strongly influences whether a given pro-
tein is a feasible target for structure deter-
mination, so the ability to predict this
property can be a valuable asset in the op-
timization of high-throughput projects.

In Fig. 3, experimental data for protein
cloning, purification, biophysical charac-
terization, and structure determination are
uploaded from many distr ibuted

workstations to a central database server
via the Internet. These are stored as stan-
dardized values and used as features for
data mining analyses. A number of re-
sponse variables can be predicted in this
manner. Decision trees were built with the
C4.5 algorithm [29] to sort proteins based
on solubility, using training sets compiled
from the database. The model was trained
using features derived from the protein se-
quences, such as the composition of vari-
ous amino acid groups (e.g., aliphatic =
C(AIGLV), aromatic = C(FWY)), sec-
ondary structure features, presence of hy-
drophobic regions, entropic measures of
sequence complexity, etc. Ellipses repre-
sent the decision tree nodes, filled to indi-
cate the number of soluble versus
insoluble proteins at each vertex. These
values appear to the right and left of each
node, respectively. Rules that discrimi-
nate between classes were then extracted
from decision trees by examining the
paths from root to leaf nodes that lead to
correct classifications. In this example, it
was found that proteins having a com-
bined composition of acidic residues
(C(DE)) greater than 18% were likely to
be soluble, while insoluble proteins gen-
erally had less than 18% acidic residues,
possessed a stretch of amino acids with
average hydrophobicity < −0.78 kcal/mol
(Hphobe), and contained fewer than 16%
acidic amino acids and their amides
(C(DENQ)).

Conclusion
As with biological sciences in general,

the emphasis of computational biology
has changed in recent years from the char-
acterization of individual molecules to the
analysis of genome-wide expression pro-
files and proteomics data sets. In contrast
to traditional single-gene experimenta-
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tion, comprehensive functional data sets
are being produced, the scale of which has
increased with the tandem sequencing of
entire genomes and the advent of
microarray technologies. An essential
part of this work is the integration of a
wide variety of experimental data to as-
semble a larger picture of biological func-
tion and frame pertinent information
within a meaningful context. These com-
posite data sets are conducive to extensive
computational analysis and present new
opportunities for data mining.

Machine learning is a useful tool for
interpreting genomic information. Both
supervised and unsupervised approaches
can often be used to analyze the same
kinds of data, depending on the desired re-
sult and the range of features available.
While supervised learning can be used to
classify examples according to a given re-
sponse variable, unsupervised learning
can aid in revealing previously unknown
relationships without a priori information.
However, meaningful clustering relation-
ships are often difficult to discern. Al-
though supervised models require an
explicit training and testing regime, they
can be used to predict the class of un-
known examples based on previous learn-
ing by approximating a target function or
discovering classification rules. This ca-
pability can allow investigators to inter-
pret data classifications and potentially
elucidate functional properties.

Bioinformatics calls for a mosaic of
computing techniques to facilitate the ef-
fective organization and interpretation of
data generated by functional genomics
projects. Large-scale experiments, such
as those performed with microarrays,
yield large homogenous data sets that are
well suited for computational analysis.
Consequently, new types of databases
have been created to handle this informa-
tion [30]. These information systems are
designed to provide management and
web-based retrieval of microarray data.
Currently under debate is whether data
sets should be normalized as they are en-
tered into a particular system, and to what
degree the details of experimental condi-
tions should be recorded. While the
microarray intensity values are well
suited to relational table storage, experi-
mental parameters vary widely across in-
dividual projects and currently defy
uniform standardization.

The data storage and analysis require-
ments of genomics research will likely
promote the development of hybrid ap-

proaches that merge database design with
computational methods. To facilitate this,
it will be necessary to establish consistent
formats for database interoperation,
which will add greatly to the utility of ex-
perimental results in terms of potential
data mining applications.
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