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Abstract 
The ultimate goal of functional genomics is to define the function of all the genes in the 
genome of an organism.  A large body of information of the biological roles of genes has 
been accumulated and aggregated in the past decades of research, both from traditional 
experiments detailing the role of individual genes and proteins, and from newer 
experimental strategies that aim to characterize gene function on a genomic scale. 

It is clear that the goal of functional genomics can only be achieved by integrating 
information and data sources from the variety of these different experiments.  Integration 
of different data is thus an important challenge for bioinformatics. 

The integration of different data sources often helps to uncover non-obvious relationships 
between genes, but there are also two further benefits.  First, it is likely that whenever 
information from multiple, independent sources agrees it should be more valid and 
reliable.  Secondly, by looking at the union of multiple sources one can cover larger parts 
of the genome.  This is obvious for integrating results from multiple single gene or 
protein experiments, but also necessary for many of the results from genome-wide 
experiments since they are often confined to certain (although sizable) subsets of the 
genome. 

In this paper, we explore an example of such a data integration procedure.  We focus on 
the prediction of membership in protein complexes for individual genes.  For this, we 
recruit six different data sources that include expression profiles, interaction data and 
essentiality and localization information.  Each of these data sources individually 
contains some weakly predictive information with respect to protein complexes, but we 
show how this prediction can be improved by combining all of them.  Supplementary 
information is available at http://bioinfo.mbb.yale.edu/integrate/interactions/. 
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Introduction 
With the recent flux of genome sequences comes the challenge for functional genomics 
to ascribe biological information, including structure, localization, function and 
regulation, to every gene in the genome.  Numerous experiments to study the genome, 
transcriptome or proteome of organisms have become commonplace, and new algorithms 
are being developed to help turn the rapidly increasing amount of whole-genome data 
into useful biological knowledge.  For example, microarray experiments measure mRNA 
expression under various cellular conditions and are currently one of the most prominent 
experiment approaches (Ermolaeva, et al. 1998, Gaasterland and Bekiranov 2000, Hegde, 
et al. 2000, Kim, et al. 2000, Shalon, et al. 1996).  The expression profile of a gene can 
shed light on its cellular function, and relate genes with similar or opposite functional 
roles.  To measure gene function in terms of mutant phenotype, genome-wide deletion 
and transposon disruption strategies have been developed (Ross-Macdonald, et al. 1999, 
Winzeler, et al. 1999).  Protein chips can directly assay the properties of proteins (Zhu, et 
al. 2001, Zhu, et al. 2000).  Another major experimental area is the yeast two-hybrid 
assay, which detects genome-wide protein-protein interactions and allows the 
construction of networks from which protein function and regulation can be inferred (Ito, 
et al. 2001, Uetz, et al. 2000).  In addition to these relatively new developments, there is 
of course also the large body of biological knowledge accumulated in the past decades of 
research. 

However, relying on any one of these methods or data sources alone is often not 
sufficient to unambiguously determine the function of uncharacterized genes.  There are 
many examples of combining different genomic-scale data sources in the literature.  The 
trivial case is the integration of two data sources.  This is often the minimum amount of 
integration needed to interpret a genomic-scale experiment.  This point might be so 
obvious that most researchers would not view it under the angle of data integration.  For 
instance, previous efforts to interrelate information from two genomic datasets include 
analyzing expression data by a variety of supervised and unsupervised methods and 
comparing to functional categories, transcription-factor binding sites, protein families, 
protein-protein interactions, and protein abundance (Ben-Dor, et al. 1999, Brown, et al. 
2000, Bussemaker, et al. 2001, Ge, et al. 2001, Gerstein and Jansen 2000, Greenbaum, et 
al. 2002, Greenbaum, et al. 2001, Gygi, et al. 1999, Heyer, et al. 1999, Jansen and 
Gerstein 2000, Jansen, et al. 2002, Qian, et al. 2001a, Qian, et al. 2001b, Tamayo, et al. 
1999, Toronen, et al. 1999). 

There have been considerably fewer attempts to integrate more than two types of whole-
genome data. One example was the combination of expression correlations, phylogenetic 
profiles and patterns of domain fusion to predict protein function (Marcotte, et al. 1999).  
In another study, a Bayesian framework was used to integrate expression, essentiality, 
and sequence motif data for the prediction of protein subcellular localizations (Drawid 
and Gerstein 2000, Drawid, et al. 2000). 

There are several benefits of combining experimental and computational data sources.  
Often, one may be able to uncover non-obvious and potentially significant relationships, 
such as those between expression and chromosomal positioning or subcellular 
localization (Cohen, et al. 2000, Drawid, et al. 2000). 



 3 

Moreover, the integration of multiple sources obviously increases the range of the 
genome that can be characterized.  This benefit of increasing coverage is obvious for 
integrating many of the experiments for individual genes or proteins, but is also valid for 
the combination of multiple genomic-scale experiments.  Because of experimental 
limitations, it is in many cases difficult to conduct experiments that really include the 
complete genome.  Thus, many genomic-scale experiments have been performed on 
sizable but only limited fractions of the genome. 

When multiple experiments cover the same genes, then there are other benefits from 
combining data.  Do the experiments agree, thus confirm each other and increase the 
confidence in the results, or did they yield conflicting information, thus leaving the result 
open for further investigation?  In general, the combination of different data sources 
should help to increase the reliability of the interpretation of experimental results. 

Of course, these last two goals of increasing coverage and reliability tend to be in conflict 
with one another.  The reliability of information confirmed by independent sources 
usually increases, but the more sources are required to agree, the fewer the number of 
instances tend to be where this is the case.  This is because the intersection between two 
datasets is always equal or less in size than the two data sources individually.  Thus, one 
often has to find the right trade-off between coverage and reliability. 

In this paper, we look at one particular example of data integration to discuss the issues 
mentioned above.  Specifically, we focus on the prediction whether two yeast proteins are 
members of the same protein complex or not.  We propose combining expression and 
interaction datasets and essentiality and subcellular localization data to this end.  In order 
to judge whether the prediction is successful, we use the MIPS complexes catalog as the 
standard for known protein complexes (Mewes, et al. 2000).  Our study is preliminary but 
intended to show possible way of combining new genome-wide datasets to ultimately 
determine all protein complexes.  Similar ways of combining genome-wide datasets for 
predicting other kinds of biological information, such as biological functions or pathways 
could be possible as well. 

What we are trying to do here is not so much characterizing or functionally defining 
individual genes, but rather pairs of genes or proteins that interact with one another in a 
complex. 

There are a few reasons why we concentrate on protein complexes.  Yeast-two hybrid 
data, one of the data types we use, can potentially be used to predict protein complexes.  
In addition, protein complexes also have a variety of nice properties that can be exploited 
for our data analysis.  We start with the assumptions that 

1. the function of any protein complex depends on the function of its subunits, thus a 
complex is dysfunctional if one of its subunits is dysfunctional or missing; 

2. there are a variety of protein properties that should be shared by all subunits of a 
complex (for instance, if the complex has a particular biochemical function, then this 
most likely also provides a functional definition for its subunits). 

Although these assumptions are rarely strictly met in reality, they provide some practical 
help for our task.  Assumption #1 has implications for the prediction of protein 
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complexes with expression data, as we will show below.  Assumption #2 allows us to 
make use of essentiality and localization data for complex prediction. 

In a previous publication, we have shown that the subunits of permanent protein 
complexes have a significant tendency to be coordinated in terms of their mRNA 
expression levels (Jansen et al. 2002).  This can be explained by assumption 1).  If the 
function of the complex were dependent on the presence of all its subunits, it would be 
energetically costly for the cell to express them in an uncoordinated and haphazard 
fashion. 

Methods 
Data Sources 
Many of the data source we list in the following paragraphs might be only weakly 
predictive with respect to protein complexes and they may lead to many false positives 
and negatives if taken individually.  However, we show later that combining the 
individual datasets can still lead to a relatively reliable prediction of protein complexes.  
Furthermore, it will become evident which data sources contribute most or least to the 
prediction. 

Expression data 
Two expression datasets were used: a cell cycle experiment (Cho, et al. 1998) and the 
Rosetta yeast compendium (Hughes, et al. 2000).  The two datasets represent different 
experimental methodologies and provide a reasonable sampling of the possible cellular 
states of yeast.  The cell-cycle data contains expression profiles obtained from 
synchronized cells over the course of two cell cycles, whereas the Rosetta data contains 
genome-wide expression ratios for 300 stationary cell states, which are derived from 280 
gene deletions and the 20 drug interaction experiments. 

For the Rosetta data, we focused on those protein pairs whose correlation exceeds a 
certain threshold (0.52).  This selects about 300,000 protein pairs from among the 
18,000,000 theoretically possible. 

For the time course data of the yeast cell cycle, we not only looked at regular correlations 
but also at correlations for time-shifted and inverted expression profiles.  In this case, the 
threshold criterion was a match score of 13 (Qian, et al. 2001a). 

These selection criteria are arbitrary in some sense, and other criteria (such as excluding 
genes that do not change at least two-fold in expression) are possible.  However, our 
simple purpose here was to create datasets of protein pairs of manageable size that are 
likely related to protein complexes. 

Predictive information of expression data 
In this section, we would like to survey the ability of expression data to predict 
membership in protein complexes, particularly address the following two questions: 

i. To what extent can we predict that a protein belongs to a complex based on its 
expression correlations? Conversely, to what extent can we predict the expression 
correlation of a pair of proteins, given they are in a complex? 
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ii. To what extent are pairs of proteins with highly correlated expression levels 
accounted for by relationships other than membership in a complex -- e.g., being in the 
same metabolic pathway? 

A simple way to analyze these questions is to look at the conditional probability 
P(class|C) that two proteins are in the same particular class (e.g., functional class or 
complex) given that their expression profiles have a particular correlation C.  We expect 
this conditional probability to increase with rising correlation C.  Unfortunately, it is 
difficult to compare this variable between complexes differing in size, as we are much 
more likely to find two randomly selected proteins within a large complex than a small 
one.  We, therefore, compare the odds ratio P(complex|C)/P(complex) between different 
complexes.  In this case, the probability of two random proteins to be in the same protein 
complex P(complex) functions as a normalization factor correcting for complex size.  To 
better understand the meaning of this ratio, we can rewrite it applying Bayes' rule: 

P(complex|C)/P(complex) = P(C|complex)/P(C) 

We can see that the right-hand side of the equation represents the distribution of 
correlation coefficients of the pairs with known biological interactions divided by the 
distribution of correlation coefficients of all possible pairs of genes in this genome. 

Figure 1A shows the results of the odds-ratio calculations, addressing the first question 
above.  As expected, the odds for finding a protein in a complex increase with higher 
levels of correlation.  Note, however, this increase is much steeper for the permanent 
complexes than transient ones.  This means that a highly correlated pair of genes has 
much greater odds of being in a permanent complex, by an order of magnitude or more.  
If we factor in that there are in general many more interactions in permanent complexes 
than transient ones, we can see that there is an overwhelmingly greater chance that a 
highly correlated pair of genes will be in a permanent complex than a transient one.  
Specifically, by adding up the interactions, we can see there are ~13:1 odds of finding a 
pair of proteins in a permanent complex as opposed to a transient one, independent of 
gene expression.  However, if genes have an expression correlation close to 1, the odds 
rise to ~1530:1.  Conversely, if the genes have a correlation close to -0.5, then the odds 
drop precipitously to ~1:9.  (Due to their size and great degree of correlation, the 
cytoplasmic ribosomes could potentially skew the results.  Consequently, in the figure, 
we show the results for the permanent complexes, with and without the ribosome.)  
Overall, one can observe that in the high correlation coefficient region, the overall 
likelihood of belonging to a protein complex for two genes is much higher than expected 
because their odds ratios are much larger than 1.  On the other hand, in the low 
correlation coefficient region, the likelihood of finding interactions is either close to or 
lower than expected according to their odds ratios.  The likelihood of finding two genes 
belonging to a protein complex increases monotonically with the expression-profile 
correlation coefficient, which means there is some predictive information for protein 
complexes in the gene expression data. 

Figure 1B addresses the second question, comparing the odds ratios for protein 
complexes with those for proteins belonging to the same metabolic pathway (Mewes, et 
al. 2000).  The observed odds ratios are similar to those for transient complexes.  This 
indicates that the odds of highly correlated genes to be in the same pathway are similar to 



 6 

those for being in a transient complex but substantially lower than for being in a 
permanent complex. 

Interaction data 
It is a straightforward idea to predict membership in protein complexes with existing 
interaction data.  For this purpose, we looked two yeast two-hybrid datasets (Ito, et al. 
2001, Uetz, et al. 2000). 

The yeast two-hybrid data presents in some sense different types of interactions than 
those among the groups of proteins unified in complexes.  This is illustrated in figure 2.  
Still, the yeast two-hybrid data can of course contribute to the prediction of protein 
complexes, although it is by far not sufficient in itself and needs to be complemented 
with other data sources. 

Essentiality data 
Essentiality data comes from the MIPS database as well as from transposon and gene 
deletion experiments (Mewes, et al. 2000, Ross-Macdonald, et al. 1999, Winzeler, et al. 
1999).  We look here at whether two proteins are either both essential or both non-
essential as an indicator for membership in the same protein complex.  If a complex is 
essential, then its subunits should be essential as well if they are necessary for the 
function of the complex as a whole. 

Localization data 
The localization information we use comes from merging data from the MIPS, Swissprot, 
and YPD databases (Bairoch and Apweiler 2000, Drawid and Gerstein 2000, Hodges, et 
al. 1999, Mewes, et al. 2000).  If the localization is known, each protein is located in one 
of the five general compartments: N (nuclear), C (cytoplasm), M (mitochondria), E 
(extracellular environment or secretory pathway), T (transmembrane).  If two proteins are 
in the same compartment, we use this as an indicator of potential membership in the same 
protein complex. 

MIPS complexes catalog 
The MIPS complexes catalog provides a complete list of the currently known protein 
complexes in yeast (Mewes, et al. 2000).  We extracted all possible protein pairs within 
the same complexes from the complexes catalog.  We used this list in order to judge the 
performance of our prediction. 

We systematically removed all those protein classes from the catalog that do not really 
represent complexes, but rather aggregated classes of related proteins.  This left us 
overall with 8,250 different protein pairs within the same complexes. 

How to go about combining datasets 
How should one go about combining these different data sources to improve prediction?  
The problem can be thought of as overlapping different protein-protein interaction 
networks (interactomes).  Two different extremes can be imagined.  For networks with 
individually low FP but high FN rates, the benefit of combining data comes from looking 
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at the union of the disparate datasets.  On the other hand, for networks with individually 
high FP and low FN rates, it is most useful to look at their intersection (see figure 3). 

Given that individual datasets have different FP and FN rates, they should be weighted 
differently.  In general, there should be more effective rules for combining networks.  
Rather than building the union or intersection for all of the datasets at once, one should 
look at different combinations of unions and intersections among the datasets (Gerstein, 
et al. 2002).  What kinds of data combination rules can one use in order to achieve 
simultaneously a low error rate and a high coverage of the prediction? 

Note that there needs to be some degree of independence or orthogonality between the 
datasets in order for the integration to work properly. 

A more refined integration strategy than just intersections or unions of all datasets would 
be to first divide the data into all possible combinations of different subsets (see figure 4). 

Then one could go about determining the error rates for each subset by comparing the 
protein pairs in each subset with the MIPS complexes catalog as a standard.  The error 
rate for a subset is defined as the fraction of false positives among the predicted 
interactions.  We explain in the results section below why the error rate rather than the 
false positive rate [= FP/(FP + TN)] should be the crucial statistic. 

Once this is done, the question remains which subsets to best include for the final 
prediction.  It seems best to start with ordering all the subsets with respect to their error 
rates.  One would pick the subset with the lowest error rate first and then successively 
add the subsets with the lowest remaining error rates.  Each time, this would increase the 
coverage while increasing the error rate at the smallest amount.  The process of including 
more and more subsets (i.e., accepting that the protein pairs in them are positives) should 
stop after a good compromise between coverage and error rate is reached. 

Results 
How much predictive information is there in the individual datasets? 
Table 1 shows the six data sources we used in the prediction of whether two genes belong 
to the same protein complex.  Before combining the data, we investigated to what extent 
the individual data sources overlap with the MIPS complexes catalog.  For instance, for 
the expression data we asked how likely it is that two genes belong to the same complex 
based on whether their expression profiles exceed a certain similarity threshold (see table 
1 for details).  Table 1 shows the resulting false positives (FP) and false negatives (FN) 
rates if gene pairs are solely classified based on these threshold criteria, after comparing 
it with the MIPS complexes catalog.  For both the cell cycle and the Rosetta data, the FP 
rates are 1.6% whereas the FN rates are well above 50%. 

There are many protein pairs predicted to interact according to the individual data sources 
that are not in the MIPS complexes catalog.  We define these as "false positives" (FP).  
This is, of course, because the MIPS complexes catalog is far from complete (not all 
protein complex interactions are known), thus the false positives either represent protein 
pairs that do not interact in reality or new interactions not previously recorded in the 
MIPS complexes catalog.  Thus, the false positives are "false" in the context of this 
classification and a machine-learning sense, rather than in a biological sense.  However 
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the number of FPs we report here can be regarded as an upper bound of the real number 
of FPs if all protein-protein interactions were known.  They also provide a numerical 
criterion to rank the data sets.  If we assume that the protein-protein interactions from the 
MIPS catalog are a representative subset of all protein-protein interactions, then the 
ranking of the FP rates should not change very much if all interactions are known.  Thus, 
we can rank the subsets in terms of their quality (see supplementary website). 

For the essentiality and localization data, we asked how likely two genes belong to the 
same complex if they both have the same essentiality and the same localization.  Again, 
table 1 shows the resulting FP and FN rates. 

At first, the low FP rates seem to be an encouraging result.  However, we are facing the 
problem that there is only a low number of positive relative to negative gene pairs in the 
yeast genome.  Recall that there are only 8,250 protein pairs in all protein complexes 
according to the MIPS catalog, but the number of negative pairs is about 18,000,000 (= 
60002/2, given that there are about 6,000 genes in the yeast genome).  Thus, even a 
relatively low FP rate results in a relatively high absolute number of false positives.  The 
lower part of the table, showing absolute numbers of false negatives and positives, 
indicates this.  The error rate ε = FP/(TP + FP) represents the fraction of FP gene pairs 
among all positively predicted gene pairs (with TP being the number of true positives).  
For each data source the error rate is almost 100% (see lower part of table 1).  For an 
acceptable prediction the error rate should be at least lower than 50%.  Again, we should 
mention here that the FPs are not necessarily "false" in a biological sense.  Thus, the error 
rates would be lower if all interactions were known. 

Thus, an optimal combination of all these four data sources should not only aim to 
minimize the overall FP and FN rate, but also the error rate ε. 

Combination of datasets to predict protein complexes 

The application of our combination strategy to the six data sources is shown in figure 5.  
With six data sources, there are 26 - 1 possible subsets.  Each of the subsets is represented 
as an open circle on the graph, with the abscissa representing the total error rate and the 
ordinate showing the number of TPs, a measure for coverage.  (If TP = 8,250, then the 
coverage is 100% because all protein pairs from the MIPS complex catalog would have 
been detected).  The subsets are ordered with decreasing error rate from left to right.  The 
successive inclusion of subsets would start in the lower right of the graph.  Then more 
and more subsets would be added, moving along the graph into the upper left direction.  
The points associated with particular subsets show the total error rate and the total 
coverage if all subsets up to the current one were combined (i.e., accepting all the protein 
pairs in them as positives). 

The total error rate can be computed as ε = ΣFP/(ΣFP + ΣTP) where ΣFP and ΣTP are the 
sums of the numbers of all false and true positives in the subsets included. 

Note that, in general, there is a tendency for the subsets with a higher degree of 
intersection to exhibit lower individual error rates, whereas the subsets with lower 
degrees of intersection often contribute more to the coverage. 
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Summary of results 
In summary, figure 5 clearly shows that one can find combinations of subsets of all the 
data sources that have much lower error rates than the data sources individually.  Recall 
that these individual error rates were close to 100% (see table 1). 

In general, figure 5 shows that, as expected, the error rates of subsets decrease the more 
agreement there is between the individual datasets.  However, this relationship is not 
strict in the sense that some individual datasets carry more weight than others do.  For 
instance, the subset "001101" has a lower error rate than "010111", although there are 
fewer individual datasets that predict an interaction. 

The computation of error rates thus gives a numerical measure to weight the confidence 
in certain protein-protein interactions.  The smaller the error rate of a subset, the larger is 
the weight that we can place on the interactions in the subset.  Furthermore, some 
individual data sources seem to carry a weight of close to zero.  This is the case for the 
essentiality data because there seems to be little difference in the error rates of subsets 
that contain the essentiality data and those that do not.  In hindsight, the essentiality data 
did perhaps provide the least information with respect to protein complexes. 

A trade-off between error rate and coverage has to be made.  In our example, the error 
rates for many of the individual subsets are so high that a small coverage with (low error 
rates) seems advisable.  For instance, if we confine ourselves to the 10 subsets with the 
lowest error rates (with a coverage of 42 TP), then the total error rate stays below 50%.  
A list of the protein pairs and error rates in these 10 subsets is available on our 
supplementary website. 

Of particular interest is the subset "110001", in which the two expression experiments 
and the localization data would predict a protein pair within a complex.  This subset adds 
only a small amount of additional error, but a large amount of additional coverage.  An 
interesting aspect is that none of these three data sources were initially intended to detect 
protein-protein interactions per se.  Given that the MIPS catalog of protein complexes is 
incomplete, the actual error rate of this subset should be lower.  Thus, one may speculate 
that expression and localization experiments should provide a valuable tool for 
identifying protein complexes in organisms that have not been studied yet extensively. 

Again, we note that the generated FPs are not necessarily FPs in the biological sense, 
especially if the error rates are low.  There are overall 37 FPs in the subsets mentioned 
above.  A further investigation of the results should focus on an analysis of the FPs, 
including further experiments. 

Discussion 
We have shown that the integration of different data sources can yield a combined dataset 
that has a substantially lower error rate than the individual datasets.  The lower error rate 
comes at the cost of lower coverage, since those subsets of the data on which many of the 
independent data sources agree tend to be rare.  For the example of predicting protein 
complexes, we have shown a procedure of how to identify these subsets of high quality. 

Our procedure could be improved in many aspects.  For instance, in the treatment of 
expression data, we arbitrarily chose particular correlation thresholds.  The correlation 



 10 

thresholds could be optimized with respect to the final prediction.  Many more datasets 
could of course be included in our analysis.  For the special case of predicting complexes, 
one could also take the connectivity of the resulting interaction networks into account in 
addition to just looking at their overlap. 

The MIPS complexes catalog reflects the currently known inventory of protein 
complexes in yeast, but this catalog is probably far from complete.  This of course affects 
our analysis, in that FPs might give hints at where true protein complexes actually exist.  
This should be analyzed by further computational or experimental investigations. 

The ideas proposed here could have two major impacts on functional genomics.  First, 
our procedure could be used to identify new protein complexes in yeast.  Second, they 
could be used to characterize protein complexes in newly sequenced organisms that have 
not been studied as extensively as yeast by traditional methods, but for which new 
genome-wide experiments are available. 

Supplementary information 
Supplementary information is available at 
http://bioinfo.mbb.yale.edu/integrate/interactions/. 

Figure & table captions 
Table 1 
The table shows the six data sources we used in the prediction of whether two genes 
belong to the same protein complex.  Here we look at the data sources individually before 
combining them.  The first two data sources are expression data, from the yeast cell cycle 
time-course by Cho et al. and from the Rosetta knockout experiments (Hughes et al.).  
The third and fourth data sources are both from yeast two-hybrid experiments (Uetz et al., 
Ito et al.)  The fifth and sixth data sources stem from information about the essentiality of 
genes (Mewes, et al. 2000, Ross-Macdonald, et al. 1999, Winzeler, et al. 1999) and the 
subcellular localization of their proteins (Bairoch and Apweiler 2000, Drawid and 
Gerstein 2000, Hodges, et al. 1999, Mewes, et al. 2000). 

We have shown expression data to be predictive with respect to protein complexes, but so 
does the information about essentiality and subcellular localization.  The reasoning is 
simply that if two genes belong to the same complex, then they should have the same or 
similar properties in terms of essentiality and localization of their protein products.  If 
one subunit of a complex is essential, then the other subunits are often essential as well, 
and if a complex is present in a particular cellular compartment, then its subunits should 
most likely be present in the same compartment too. 

We investigated to what extent we can predict whether two genes are in the same protein 
complex based on each of these data sources individually.  For instance, for the 
expression data we asked how likely it is that two genes belong to the same complex 
based on whether their expression profiles exceed a certain similarity threshold.  For the 
cell cycle data, we looked at gene pairs for which either the regular correlation or the 
time-shifted and inverted correlations exceed a threshold with a match score of 13 (Qian, 
et al. 2001a).  For the Rosetta data we simply looked at gene pairs that exceeded the 
regular (Pearson) correlation of 0.52.  Each of these criteria yields about 300,000 protein 
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pairs.  As the standard to decide whether two genes really belong to the same complex, 
we used the complex catalog from the MIPS database.  The table shows the resulting 
false positives (FP) and false negatives (FN) rates if gene pairs are solely classified based 
on these threshold criteria [FP rate = FP/(FP + TN) = 1 - sensitivity and FN rate = 
FN/(FN + TP) = 1 - specificity].  For both the cell cycle and the Rosetta data the FP rates 
are 1.6% whereas the FN rates are well above 50%. 

For the essentiality and localization data, we asked how likely two genes belong to the 
same complex if they both have the same essentiality and the same localization.  The 
table shows the resulting FP and FN rates.  Note the low FN rate for the localization data, 
indicating that two proteins with different subcellular localizations are very likely not 
interacting in a complex, as expected. 

At first, the low FP rates seem to be an encouraging result.  However, we are facing the 
problem that there is only a low number of positive relative to negative gene pairs in the 
yeast genome.  There are only 8,250 protein pairs in all protein complexes according to 
the MIPS catalog, but the number of negative pairs is about 18,000,000 (= 60002/2 given 
that there are about 6,000 genes in the yeast genome).  Thus, even a relatively low FP rate 
results in a relatively high absolute number of false positives.  The lower part of the table, 
showing absolute numbers of false negatives and positives, indicates this.  The error rate 
ε = FP/(TP + FP) represents the fraction of FP gene pairs among all positively predicted 
gene pairs (with TP being the number of true positives).  For each data source the error 
rate is almost 100%.  For an acceptable prediction the error rate should be at least lower 
than 50%. 

Figure 1 
We show different plots of the odds ratio P(class|C)/P(class), which is the ratio of the 
conditional probability of two proteins with a correlation C to be in the same protein class 
to the probability of finding these two proteins in the same class independent of the 
correlation.  Part A focuses on different complex classes.  Two proteins are considered to 
be in the same class if they are both in the same complex. 

Part B shows the odds ratios for four representative pathways compared with those for 
permanent complexes from part A.  In this case, proteins are considered to be in the same 
class if they are both participating in the same pathways (according to the MIPS 
functional catalog) or if they are directly interacting with one another by a genetic, 
physical or yeast two-hybrid interaction. 

The definitions of permanent and transient complexes can be found in a previous 
publication (Jansen et al., 2002).  Complexes with ten or more subunits that are neither 
classified as permanent or transient are listed as “other”. 

In general, all odds-ratios show a comparable significant increase as a function of the 
correlation C.  However, the "permanent" complexes show the greatest difference 
between odds ratios for high and low correlations. 

Figure 2 
Conceptually, there are two different types of protein "interactions".  First, there are 
binary-type interactions between pairs of proteins such as those measured by the yeast-
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two hybrid system (shown in the left part of the figure).  These interactions are mostly of 
physical nature, that is, the proteins are interacting with one another through a structural 
contact interface.  Taken together, the collection of these interactions results in a whole 
network of genome-wide binary links between proteins.  Secondly, there are interactions 
of whole groups of proteins that together form a structural complex (shown in the right 
part of the figure).  Although not all of the subunits in a protein complex are in structural 
proximity and thus do not physically interact with one another, they form a coherent 
structural unit as a whole with common properties.  For instance, if the protein complex 
localizes in a particular subcellular compartment, then all its subunits should be present in 
the same compartment as well.  Thus, the subunits share certain properties, regardless of 
their structural proximity in the complex.  The schematic shows the example of a protein 
complex composed of four subunits, with each link indicating a shared property between 
two subunits.  All subunits are equally linked with the other subunits, thus, the resulting 
graph is complete with (42 - 4)/2 = 6 edges between the 4 nodes (proteins). 

Figure 3 
The integration of different datasets to predict membership in protein complexes can be 
visualized as overlapping different protein-protein interaction networks (interactomes).  
Two different extremes can be imagined.  On the one hand, the networks might be 
associated with low FP but high FN rates (left).  In this situation, the benefit of 
combining data comes from looking at the union of the disparate datasets.  On the other 
hand, the individual networks might be associated with high FP but low FN rates (right).  
In this case, it is most useful to look at intersections of the different datasets.  Circles 
represent proteins, links interactions, and dotted lines known associations. 

Individual datasets should be weighted differently, given their different FP and FN rates.  
The data from some sources might be more reliable than from others.  This is illustrated 
in the right hand panel, where the thicker lines correspond to lower FP rates.  

Figure 4 
Hypothetical integration of three datasets.  We define a binary "subset profile" for each of 
the subsets of the Venn diagram.  For instance, the profile "101" encompasses all data 
points that are present in dataset A and dataset C, but not in dataset B.  The degree of 
intersection of a subset can be defined as the sum of the profile.  For instance, for profile 
"101" the degree of intersection is 2, meaning that two data sources are intersecting.  
These definitions are useful when dealing with more than three data sources (see figure 5).  
When integrating an increasing number of data sources, generally the error rates go down 
if more and more datasets agree with one another (although this is not necessarily the 
case).  In other words, the error rates go down with increasing intersection among the 
several datasets.  In the Venn diagram, darker shaded areas schematically indicate lower 
error rates.  As the Venn diagram shows, there are overall 7 different subsets for 3 data 
sources.  In general, for N data sources, there are 2N - 1 different subsets. 

While focusing on the subsets of the data with higher degrees of intersection between the 
different data sources tends to reduce the error rate, it simultaneously reduces the 
coverage.  The higher the degree of intersection of a subset, the fewer data points the 
subset usually contains. 
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Thus, an optimal strategy for combining multiple datasets would be to find a reasonable 
trade-off between the highest possible coverage and the lowest possible error rate.  For 
the schematic example in the figure, one could for instance start by first considering the 
subset "111" (the intersection of datasets A, B, and C), thus choosing the subset the with 
the lowest error rate.  Then, in order to increase the coverage, one could subsequently add 
the subsets with the lowest error rates, in this case the subsets "101" and "110", and so on.  
This would increase the coverage while simultaneously increasing the overall error rate at 
the lowest amounts.  A practical example of this strategy is shown in figure 5. 

An open question is how to determine the error rate.  In our example, we use the MIPS 
complexes catalog as the standard for protein complexes.  We look at how the protein 
pairs in each subset profile compare with this standard and compute empirical error rates 
based on that. 

Figure 5 
Here we show how the error rate and coverage change as we include more and more 
subsets for the prediction of membership in protein complexes.  The subsets arise from 
the combination of the 6 data sources shown in table 1.  The abscissa shows the total 
error rate in decreasing order, whereas the ordinate shows the number of true positives, a 
measure of the coverage.  We start in the lower right of the graph with the subset 
"111101" (the subset profile is explained in the legend at the bottom).  There is only one 
protein pair in this subset, which is also present in the MIPS complexes catalog.  Thus, 
we record 1 true positive and an error rate of 0%.  Next we include the subsets "011011" 
and "101011", which increase the number of true positives to 4.  The next subset with the 
lowest error rate among the remaining ones is "110101", which includes 3 true positives 
and 1 false positives.  Thus, at this point the total coverage would be 7 true positives, 
while the total error rate has increased to 1/(1 + 7) = 12.5%.  The process of including 
successive subsets with the lowest error rate can be continued such that the coverage 
increases at the cost of a minimally increasing total error.  The total error rate can be 
computed as ε = ΣFP/(ΣFP + ΣTP). 

The first 11 of the 63 (= 26 - 1) subsets with the lowest error rates are labeled in the figure.  
Note that subsets with higher degrees of intersection generally have lower error rates, 
whereas subsets with lower degrees of intersection contribute more to coverage (although 
this relationship is not strict, given that the different data sources are of varying quality).  
In fact, several of the subsets with high degrees of intersection (> 4), are empty.  The 
subset with the highest degree of intersection "111111" is not shown, because it did not 
contain any data. 

The subset "110001" -- which is the intersection of the two expression data sets and the 
localization data -- causes the coverage to increase strongly, but pushes the total error rate 
above 50%.  In the extreme, when all subsets are included, both the coverage and the 
error rate are near 100%. 
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