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ABSTRACT Eight microbial genomes are
compared in terms of protein structure. Specifi-
cally, yeast, H. influenzae, M. genitalium, M.
jannaschii, Synechocystis, M. pneumoniae, H.
pylori, and E. coli are compared in terms of
patterns of fold usage—whether a given fold
occurs in a particular organism. Of the ,340
soluble protein folds currently in the structure
databank (PDB), 240 occur in at least one of the
eight genomes, and 30 are shared amongst all
eight. The shared folds are depleted in all-
helical structure and enriched in mixed helix-
sheet structure compared to the folds in the
PDB. The top-10 most common of the shared 30
are enriched in superfolds, uniting many non-
homologous sequence families, and are espe-
cially similar in overall architecture—eight
having helices packed onto a central sheet.
They are also very different from the common
folds in the PBD, highlighting databank biases.
Folds can be ranked in terms of expression as
well as genome duplication. In yeast the top-10
most highly expressed folds are considerably
different from the most highly duplicated folds.
A tree can be constructed grouping genomes in
terms of their shared folds. This has a remark-
ably similar topology to more conventional
classifications, based on very different mea-
sures of relatedness. Finally, folds of mem-
brane proteins can be analyzed through trans-
membrane-helix (TM) prediction. All the
genomes appear to have similar usage patterns
for these folds, with the occurrence of a particu-
lar fold falling off rapidly with increasing num-
bers of TM-elements, according to a ‘‘Zipf-like’’
law. This implies there are no marked prefer-
ences for proteins with particular numbers of
TM-helices (e.g. 7-TM) in microbial genomes. Fur-
ther informationpertinenttothisanalysis isavail-
able at http://bioinfo.mbb.yale.edu/genome. Pro-
teins 33:518–534, 1998. r 1998 Wiley-Liss, Inc.
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INTRODUCTION

In the last 3 years the genomes of a number of
free-living organisms have been completely se-

quenced, generating tremendous interest, popular
as well as scientific.1–3 This event provides a unique
opportunity to perform comprehensive comparisons
between organisms on a molecular level. One of the
most interesting questions that can be addressed
through such comparisons is whether different organ-
isms have distinctly different patterns of protein fold
usage. That is, to what degree is there a common set
of molecular parts (or shapes) that are shared univer-
sally among different organisms? Or, conversely, to
what degree do certain protein folds occur only in one
group of organisms and not in others (e.g., in eukary-
otes but not in eubacteria)?

This type of ‘‘occurrence’’ analysis has been per-
formed previously in terms of sequence motifs, fami-
lies, functions, and biochemical pathways. Starting
from the most basic units, genomes have been com-
pared in terms of the relative frequencies of short
oligonucleotide and oligopeptide ‘‘words.’’4–7 The de-
gree of gene duplication in a number of genomes has
been ascertained.8–13 Other analyses have looked at
how many highly conserved sequence families in one
organism are present in another.14–19 Finally, if
sequences can be related to specific functions and
pathways, one can see whether homologous se-
quences in two organisms truly have the same role
(ortholog vs. paralog) and whether particular path-
ways are present or absent in different organ-
isms.8,16,20–23 This work has yielded many interesting
conclusions in terms of pathways that are modified
or absent in certain organisms. For instance, the
essential citric acid cycle is found to be highly
modified in Haemophilus influenzae.23,24 Further-
more, identifying pathways and proteins unique to
certain microbes may prove useful for developing
drugs (e.g., antibiotics against bacteria).16,18,25–29

The analysis of structure and fold families is
expected to be particularly advantageous from the
point of view of occurrence analyses for three rea-
sons:

First, structures allow one to define more precisely
the ‘‘module’’ or part that is shared. This is particu-
larly true for groups of aligned structures, which
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allow the definition of a structural core.30,31 It is
possible (and quite productive) to define modules
purely in terms of conserved regions in sequence
alignments.32–38 However, functioning protein mod-
ules fundamentally consist of units of 3D structure,
usually folding domains, and relating modules de-
fined on the sequence level to structure enables them
to be better characterized.

Second and more importantly, one expects analy-
sis of structure to reveal more about distant evolu-
tionary relationships than just sequence compari-
son, since structure is more conserved than sequence
or function.39,40 In other words, it is at the level of
protein structure where one sees the greatest redun-
dancy and reuse in biology. It is believed that the
number of structural motifs is very limited, and
elucidation of this limited repertoire of molecular
parts is seen as one of the principal future challenges
for biology.41,42

A final reason that structure is advantageous for
genome comparisons is that the relationship be-
tween sequence similarity and structural similarity
is much better defined than the corresponding rela-
tionship between sequence and function.

It is generally accepted that proteins with similar
sequences usually have similar structures. A decade
ago Chothia and Lesk39,43 systematically investi-
gated this relationship. They found that the extent of
the structural changes is directly related to the
extent of the sequence changes. The relationship
between sequence similarity and functional similar-
ity is much less clear.44 In part, this is because it is
much more difficult to specify precisely a function
than a sequence or a structure. Moreover, even when
the functional identification is well specified, there
are several examples in which highly similar se-
quences have completely different functions, i.e.,
same fold but different function.

Here the eight genomes listed in Table I are
compared in terms of their usage of protein folds.
These eight, which are among the first to be com-
pletely sequenced, provide a most diverse compari-
son. They represent microbes from the three king-
doms of life (Eukarya, Eubacteria, Archaea), from
different environments (room temperature and pres-
sure to high temperature and pressure, and neutral
pH to highly acidic), with a wide range of genome
sizes (0.6–13 Mb), and with a variety of modes of life
(from parasite to autotroph).

The comparisons here follow up on recent work
comparing fold usage in representative collections of
sequences from different species or in complete inven-
tories of predicted structures in a genome.12,45,46,127,128

There has also been much work focusing specifically
on surveying the occurrence of membrane proteins in
genomes.12,47–55 As the work here implicitly involves
comparison of protein structures, it also rests on a
foundation provided by the emerging protein fold
classifications.56–63

CATEGORIES OF FOLDS

The protein folds in the genomes can be divided
into three categories:

1. Those corresponding to known structures of soluble
proteins. Based on current technology, folds in
this category represent 6–14% of the total resi-
dues in the genomes, 9% on average (involving
11–20% of the open reading frames [ORFs]).
Similar fractions have been found in many previ-
ous analyses.28,44 These folds are the part of the
genome that can be best characterized in terms of
protein structure and will be dealt with first, in
the next section.

TABLE I. Genomes andAbbreviations Used

Abbrev.
Kingdom

(subgroup) Genome
Size
(Mb)

No. of
ORFs Reference

Website URL
(http://. . .)

EC Bacteria (gram negative) Escherichia coli 4.60 4290 87 www.genetics.wisc.edu
HI Bacteria (gram negative) Haemophilus influenzae 1.83 1680 24 www.tigr.org/tdb/mdb/hidb/

hidb.html
HP Bacteria (gram negative) Helicobacter pylori 1.66 1577 53 www.tigr.org/tdb/mdb/hpdb/

hpdb.html
MG Bacteria (gram positive) Mycoplasma genitalium 0.58 468 120 www.tigr.org/tdb/mdb/mgdb/

mgdb.html
MJ Archaea (Euryarchaeota) Methanococcus jannaschii 1.66 1735 121 www.tigr.org/tdb/mdb/mjdb/

mjdb.html
MP Bacteria (gram positive) Mycoplasma pneumoniae 0.81 677 122 www.zmbh.uni-heidelberg.de/

M_pneumoniae/
MP_Home.html

SC Eukarya (fungi) Saccharomyces cerevisiae 13 6218 123 genome-www.stanford.edu/
Saccharomyces

SS Bacteria (Cyanobacteria) Synechocystis sp. 3.57 3168 124 www.kazusa.or.jp/cyano/
cyano.html
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2. Those made from transmembrane helices. Folds in
this category are analyzed by transmembrane
helix prediction.

3. Other. Proteins in this category are either soluble
proteins with (currently) unknown fold, mem-
brane proteins composed of transmembrane
b-strands (such as porins64), or proteins that do
not assume a fixed conformation (such as repeti-
tive, low-complexity regions65). Although some of
these proteins can be surveyed structurally to a
limited degree by prediction methods, here they
are filtered out and excluded from the analysis.
(For an example of the identification of b-mem-
brane proteins in genomes, see Champion et
al.66.)

Division of the Protein Databank Into
Families, Folds, and Superfolds

An important preliminary step in characterizing
the known folds in the genomes is clustering the
proteins in the structure databank (the PDB67) into
sequence families, groups of homologous sequences
for which there is no significant similarity between
groups. Doing this, via a new clustering approach
described below, gives 990 distinct sequence families
in the (current) databank. Then, using the structural
similarity relationships in the SCOP database, se-
quence families that share the same fold but that
have no detectable homology can be combined into
folds. There are currently 338 folds in the PDB, with
an average of three sequence families per fold.68 The
fact that the number of folds is considerably less
than the number of sequence families suggests that
many of the evolutionary similarities between highly
diverged organisms may only be apparent in terms of
structure, all the sequence similarity having been
eroded away.69

The known folds can be ranked by how many
different families of nonhomologous sequences with
which they are associated. Folds uniting many dis-
tinct sequence families have been dubbed super-
folds.59 These may represent intrinsically stable and
favorable structural arrangements, as suggested by
a variety of analyses.59,70,71 Here the 25 known folds
associated with the most sequence families are de-
fined to be superfolds.

Thus the analysis begins by dividing the structure
databank at three levels: into 990 sequence families,
which are apportioned among 338 folds, which, in
turn, contain 25 superfolds.

ANALYSIS OF SOLUBLE-PROTEIN FOLDS
IN GENOMES

Fold Tables and Usage Patterns in Terms of
Binary Numbers

Having been clustered, the known structures in
the PDB were compared against the eight genomes.
The raw results take the form of two ‘‘fold’’ tables,
listing how many times each of the 990 sequence

families and 338 folds in the PDB occur in each of the
eight genomes. The complete tables are quite large
(8 3 338 and 8 3 990), so showing them in full is not
possible. Only the top quarter of one is reproduced
here, listing the 54 folds that occur in at least seven
of the eight genomes (Fig. 1). However, as described
below, the complete tables (and other associated
information) are available over the web in a variety
of convenient formats (see, in particular, http://
bioinfo.mbb.yale.edu/genome/browser/fold-report).

The raw fold tables are condensed and cross-
tabulated into summaries (Tables II and III), indicat-
ing how often particular patterns of fold usage occur
(i.e., how often a fold is in yeast and Escherichia coli
but not in the other six genomes). One way of
achieving this condensation is through the use of
Venn diagrams.45,72,73 However, this is awkward for
eight genomes. A more convenient representation for
these patterns is through an 8-digit binary number,
where a digit is ‘‘1’’ if the fold occurs in the correspond-
ing genome and ‘‘0’’ if it does not assuming the
genomes are listed in distinct order as shown in
Table II). (Also ‘‘*’’ matches both occurs and does
not.) There are 255 possible patterns of fold usage
(28–1). However, as indicated in Table II, only about
a quarter (62, 24%) of these patterns are observed.

The most common single pattern of fold usage is
for a fold to occur in all eight genomes, and this
occurs 30 times, as shown in Figure 1.

The 30 shared folds presumably represent a most
ancient and essential set of molecular parts, as they
are present in all three kingdoms of life, in a wide
variety of environments, and in genomes of very
different size. They include a number of ribosomal
protein folds (e.g., L14 and S5, domain 2), folds that

Fig. 1. Usage of each of the known folds in eight different
genomes. The entire table is available over the web at http://
bioinfo.mbb.yale.edu/genome/browser/fold-report. Here only the
top part of the table is shown, corresponding to the folds that occur
in at least seven genomes. In all columns inverted (white-on-black)
squares are for numbers .10, gray squares are for 2–9, and white
squares are for 1. Column 1 (‘‘class’’) is the structural class that the
fold belongs to, as determined by SCOP.58 Column 2 (‘‘Fold#’’) is
the fold number in SCOP 1.35. Columns 3–10 (‘‘EC’’ to ‘‘MG’’) give
the total number of matches in one genome for a particular fold.
This is on a domain level so there can potentially be more than one
match per ORF (see text). For instance, the first row shows that
there are 19 Rossmann fold domains in the HP genome. The
columns are sorted in terms of the total number of matches in the
genome, with EC having the most and MG the least. Column 11
(‘‘Total’’) is the row total of columns 3–10, the total number of times
the fold occurs in all eight genomes. Column 12 (‘‘Fam.’’) gives the
number of sequence families with a particular fold in the PDB. This
column is used to determine whether or not a fold is a superfold
(top 25 in terms of the number of sequence families), and inverted
boxes highlight the superfolds. Column 13 (‘‘PDB’’) gives the
number of times a particular fold occurs in the PDB, i.e., how many
structures have been solved with this fold. This column should be
compared with column 11 (‘‘Total’’) to highlight the biases in the
PDB. Column 14 (‘‘Rep. Struc.’’) gives a representative structure
with this fold, including residue selection. (The residue selection
for GroEL is A:2–136, A:410–525.) Abbreviations: dom, domain;
Nt-dom, N-terminal domain; Ct-dom, C-terminal domain.
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act as scaffolds for many different functions (TIM-
barrel and OB-fold), folds for the binding of cofactors
and certain other molecules (NAD-binding Ross-
mann fold and the thiamin-binding fold), and folds
associated with specific metabolic functions (the

phosphoglycerate kinase fold and the P-loop contain-
ing NTP hydrolase fold). There are fewer sequence
families than folds present in all the genomes (26),
dramatically illustrating how structure is conserved
more than sequence.

Figure 1.
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Another common and simple to understand fold-
usage pattern is when a fold is present in only a
single genome, i.e., for folds unique to specific organ-
isms. As shown in Table III, each of the eight
genomes has at least one unique fold. Yeast has the
most unique folds, followed by E. coli (EC; 23, then
19). At the other extreme, Methanococcus jannaschii
(MJ) has three unique folds and Mycoplasma geni-
talium (MG) only one.

The converse of a fold being present in a single
genome is for it to be absent from only one of the
eight genomes. Twenty-four folds are present in
exactly seven of the eight of the genomes. They are
shown in Figure 1.

It never occurs that a fold is missing from EC,
Saccharomyces cerevisiae (SC), Haemophilus influen-
zae (HI), or Synechocystis sp. (SS) and is present in
all the other genomes. When a fold is missing from
one genome, it is usually missing from MJ (16 times
out of 24). In a similar fashion, most of the time when
a fold is present in six of the eight genomes it is
absent from Mycoplasma pneumoniae (MP) and MG.

Disregarding whether a fold occurs in another
genome, one finds that 240 of the 338 known folds in
the PDB (and 547 of the 990 sequence families) occur
in at least one of the eight genomes. Thus, ,10% of
the residues in these primitive organisms match
,70% of the known folds.

Overall, EC has the most distinct (not unique)
folds, followed by SC, and predictably MG, MP, and
MJ have the fewest. As a fraction of the number of its
ORFs, MJ has the fewest known folds.

Fold-Usage Tree

One can also take the observed patterns of fold
usage and use this to cluster the genomes. A ‘‘dis-
tance’’ between two genomes can be reasonably
defined as the number of common folds shared
between two genomes as a fraction of the total folds
in the genomes. This is similar to the definitions of
distance used in traditional phylogenetic analysis, in
which the number of shared taxonometric characters
or features is used as the basis for classification.74

Other definitions are, of course, possible. A tree built
with this distance metric is shown in Figure 3.

For comparison the fold-usage tree is shown next
to a number of other trees constructed by different
distance measures:

1. The overall difference in amino acid over the
whole genome

2. The number of shared sequence families (very
similar to the number of shared folds)

3. The sequence divergence of related proteins that
share the same fold and are present in all eight
genomes, a measure that is most similar to the
customary measure based on individual proteins

Remarkably, even though they are derived from
such different properties of the organisms, these
trees are all very similar to each other in topology
and also similar to the conventional classification of
microbes, based on 16S ribosomal RNA sequences
(summarized in Table 1).8,75 That is, they group
together the gram-positive bacteria (MP and MG)

TABLE II. The Observed Patterns of Fold Usage†

†Each of the 8-bit binary numbers represents a particular pattern of fold usage: ‘‘1’’ if a fold is present and ‘‘.’’ if it is absent. From left to
right, the bits correspond to EC, SC, HI, SS, HP, MJ, MP, and MG. The number in parentheses after the binary number is the number
of folds that have this pattern of usage. For instance, ‘‘..1..... (04)’’ means that there are four folds present in HI and in no other of the
genomes. There are 255 possible patterns of fold usage, but only the 62 that are observed are shown here.
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and the gram-negative bacteria (HI and EC) and
position these two bacterial lineages with the cyano-
bacteria SS a distance from the eukaryote SC and
the archeon MJ. The major difference between the
trees is the treatment of HP, which is closer to the
mycoplasms in the composition tree and closer to EC
and HI in the other trees. HP is a gram-negative
proteobacterium and should be grouped with EC and
HI. However, it has been found to be rather problem-
atical in terms of evolutionary classification.53,76

Distribution of Fold Classes and Superfolds

To gain more structural insight into what types of
folds are shared between genomes, it is possible to
classify each fold as all-a, all-b, a/b, a 1 b, or other
(using the definitions of Levitt and Chothia77) and then
to see how the folds corresponding to each of the
structural classes are distributed among the genomes
(Fig. 1 and Tables 3 and 4). Compared with the PDB, the
most common folds in the genomes (i.e., those that occur
in many genomes) are enriched in mixed domains
containing both helices and strands and depleted in
all-a ones. Specifically, of the 30 folds that occur in all
eight genomes, one is all-a, four are all-b, and the rest
are mixed (3% all-a and 13% all-b). In contrast, of the
338 folds in the PDB, 75 are all-a and 55 are all-b (22%
and 16%). EC has most of the unique all-b folds and
yeast the most unique all-a ones.

The superfolds are much more highly represented
in the folds present in all (or many) genomes than
they are in the PDB. In particular, 7 of the 25
superfolds are present in all eight genomes, and only
2 are not present in at least one genome. Figure 2
shows how superfolds are shared to a greater degree
between genomes than are folds and likewise, how
folds are shared more than sequence families.

Number of Structure Matches and the
Top 10 Folds

In addition to being ordered by how many genomes
they occur in, folds can also be arranged by how often
they occur in total in all eight genomes. That is, the
number of ‘‘matches’’ that PDB structures with a
given fold have in all eight genomes can be used to
rank the folds. The 240 folds present in at least one
genome have 3,610 total matches in all the genomes,
about 15 per fold and 2 per fold per genome. The
yeast genome contributes the most structure matches
of the eight genomes (1,073), reflecting its large size
and highly duplicated character.11

The 10 folds of the 30 that occur most often in all
eight genomes, i.e., those with the most matches, are
drawn in Figure 4.

These are the top 10 folds. They include the seven
superfolds that are present in all eight genomes.
Furthermore, they have a remarkably similar archi-
tecture, containing interleaved helices and sheets.
They can be divided into barrel folds (reductase/
elongation-factor, OB-fold, and TIM-barrel), classic
a/b folds with helices packed on either side of a
central sheet (P-loop hydrolase, Rossmann fold, and
thiamin-binding), folds with helices packed onto a
single face of a sheet (ferrodoxin, FAD-binding, and
b-grasp), and a fold with a more complex structure
(class II synthetase). Overall, 8 of the top 10 contain
a clear central sheet with helices packed onto at least
one face. The two exceptions are the OB-fold and the
reductase/elongation-factor fold, which are mostly
structured by strands.

Ranking Folds by Expression Level

The top 10 list in Figure 4 ranks folds by how often
they occur in the genome, tending to emphasize
highly duplicated genes. Folds can also be ordered by
a number of other criteria. In particular, they can be

TABLE III. Folds Present in orAbsent From Only a Single Genome†

Overall totals
No. of times a ‘‘fold’’ is

absent only from this genome
No. of times a ‘‘fold’’ is

present only in this genome
Matches to the PDB Distinct folds Fold Fam. All-a All-b Fold Fam. All-a All-b

EC 848 174 . . . . 19 51 1 6
SC 1,073 157 . 3 . . 23 84 5 3
HI 394 146 . . . . 4 11 . 1
SS 534 140 . 1 . . 6 24 . 3
HP 254 107 2 4 . 1 2 11 . 1
MJ 233 82 16 29 4 3 3 6 1 1
MP 140 76 3 3 . 1 2 3 1 .
MG 134 74 3 1 . . 1 2 1 .
Total 3,610 338 24 41 4 5 60 192 9 15
†Column 2 (‘‘Matches’’) shows how many total homologues there are for a particular genome to structures in the PDB (i.e., total PDB
hits in the genome). Column 3 (‘‘Distinct folds’’) shows how many different folds are contained in this genome, regardless of whether
these folds occur in other genomes. Columns 4–7 (under ‘‘absent’’) show how many times one of the 338 folds, 990 sequence families, 48
all-a folds, or 39 all-b folds are absent only from this genome (and not from the other seven). Columns 8–11 (‘‘present’’), conversely,
show how many times a fold or family is only present in this genome, i.e., how many unique folds the genome has.
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ranked in terms of expression level, essentially by
mRNA occurrence in the cell. This has already been
done in nonstructural terms for all the genes in
yeast.78–80 Table IV shows how this expression level
ranking maps onto folds. Using data from DeRisi et
al.,80 Table IV shows the most highly expressed folds
in yeast grown in two different conditions (high
sugar and low sugar, aerobic vs. anaerobic condi-
tions). This ranking of folds is clearly different from
that purely based on duplication. In particular, note
how two DNA-binding folds (the Zn finger and the
DNA-binding 3-helix bundle) are ranked high in
terms of duplication but low in terms of expression.
This is quite reasonable given that one usually
expects DNA-binding proteins to be common in the
genome but expressed at very low levels. Note also
how the most common fold in terms of expression
changes in the different conditions.

ANALYSIS OF MEMBRANE-PROTEIN
FOLDS IN GENOMES

Overall Numbers

The usage of membrane-protein folds was sur-
veyed by first performing simple transmembrane-
helix (TM) predictions and then seeing what struc-
tural class the prediction was in, i.e., 3-TM, 5-TM,
and so on.

Overall, about 5% of the residues in the genomes
are in transmembrane helices, ranging from a high

of 7% in EC to a low of 3% in MJ. The number of
ORFs with at least one transmembrane element
ranges from ,35% in EC, SC, and SS to ,20% in MJ,
for an average of 28%, indicating that EC, SC, and
SS have more membrane proteins (as a fraction of
the total) than the other genomes. This agrees with
previous work by others, who found that ,20–30% of
the proteins in microbial genomes are membrane
proteins, the specific value depending somewhat on
prediction method and threshold used.12,47–55

Zipf’s Law Fit and 7-TM proteins

The number of TM-helices per protein follows a
similar decreasing pattern in each genome, with
fewer proteins having large numbers of TM-helices.
As shown in Figure 5, the fraction F of proteins in the
genome with a given number n of TM-helices can be
fit with the expression F(n) 5 0.18 n21.8, where n
ranges from 0 to 15. (Without great degradation of
the fit, the even simpler expression 1/[5n2] can be
used as well.) This expression has a form like that of
the Zipf ’s law that often occurs in the analysis of
word frequency in documents.81 Similar Zipf law-like
expressions have been found to apply in a variety
of other situations relating to the occurrence of
proteins (e.g., in relation to the occurrence of oligo-
peptide words82–84). Moreover, this particular func-
tional form for the occurrence of proteins with a
given number of TM-helices falls off smoothly with

TABLE IV. Yeast Folds Ranked by Duplication and Expression†

Common yeast folds
(SCOP) Rep. structure Genome duplication Expression (aerobic) Expression (anaerobic)

Protein kinases (cat. core) 1hcl 1 3 4
NTP hydrolases with P-loop 1gky 2 1 2
Classic Zn finger 1ard 3 9 5
Ribonuclease H-like motif 2rn2 4 2 1
Rossmann fold 1xe1 5 4 3
Zn2/Cys6 DNA-binding domain 125d 6 6 7
7-Bladed b-propeller 2bbk-H 7 8 16
TIM-barrel 1byb 8 5 6
Like ferrodoxin 1fxd 9 7 10
DNA-binding 3-helix bundle 1enh 10 30 36

— —
GroES-like 11ep-A 17 10 9

— —
Like HSP70, Ct domain 1dkz-A 22 11 8
†This table shows the most common folds in the yeast genome ranked according to duplication and expression. Columns 1 and 2 give
the name for the fold, as determined by SCOP58 and a representative structure with this fold. Ct domain stands for C-terminal
domain. Column 3 gives an ordering of folds in terms of the number of times they are found in the yeast genome. For instance, the top
fold (kinase) is found 110 times, and the second fold (NTP hydrolase) is found 69 times (from data in the Fig. 1 fold table). Columns 4
and 5 give an ordering of folds in terms of their degree of expression. Using the data from DeRisi et al.,80 the total expression E of a fold
F is calculated as a sum of the expression levels of all the ORFs that contain this fold. The expression level of a given ORF (i.e., ORF i)
is the degree of its ‘‘Red’’ color on a cDNA microarray R(i), less the background Rback(i), viz.: E(F) 5 S=i containing F R(i) 2 Rback(i). Column
4 gives the expression in aerobic conditions (high sugar, second time-series data point in DeRisi et al.), and Column 5, in anaerobic
conditions (low sugar, high ethanol, last time-series data point in DeRisi et al.). Note how some folds that are in the top 10 in terms of
duplication are not in this select list in terms of expression (e.g., ‘‘DNA-binding 3-helical bundle’’).
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an increasing number of helices (n), implying that
there is no particular preference (i.e., local maxi-
mum) for proteins with seven TM-helices. This sug-
gests that this heavily studied group of proteins is
not exceptionally important in the context of micro-
bial genomes.

There are two additional points to note about
Figure 5.

First, the logarithmic scale of the figure tends to
emphasize proteins with many TM-helices. How-
ever, this can be a bit deceptive as the bulk of the
membrane proteins in each genome has only a few
TM-spans (e.g., 2-TM). Second, although the fre-
quency of TM-helices fits the Zipf ’s law fairly well in
an overall sense, on closer examination there are
some notable differences between the genomes. In
particular, MP appears to have more 7-TM folds than
average (3% vs. 1%) and EC more 12-TM folds. Yeast
has fewer 9-TM helix folds and MG fewer 10- and
11-TM folds.

Most of the membrane-protein surveys agree on
this absence of 7-TM proteins in microbial genomes;

some also claim to find more 6- and 12-TM proteins
in bacterial genomes corresponding to well-known
families of transporter proteins.12,50,52,55 In contrast,
surveys of the incomplete (and highly biased) set of
human sequences and the unfinished worm genome
find a relative abundance of 7-TM proteins in these
multicellular organisms.50,55

Conclusions

Eight microbial genomes have been compared in
terms of their usage of protein folds. To this end, a
‘‘binary-number’’ representation was developed for
counting and comparing patterns of fold usage. It
was found that the eight genomes contain 240 of the
338 known soluble protein folds, and 30 of these are
shared among all eight. Compared with the PDB, the
shared folds are enriched in mixed structure (both
helices and sheets) and depleted in all-a domains.
The 10 most common of the 30 shared folds (the top
10) are especially similar in structure, with 8 of the
10 having a classic architecture of helices packed
against a central sheet. They are also particularly
enriched in superfolds (7 of 10).

Each of the eight genomes, including the very
minimal MG, has at least one unique protein fold not
present in any of the others. Conversely, when a fold
is absent from only one genome, it is usually absent
from the archeon MJ. Overall, a tree clustering the
genomes in terms of their number of shared folds has
a remarkably similar structure to more conventional
classifications that are based on amino acid composi-
tion or ribosomal sequences.

Finally, the folds of membrane proteins were ana-
lyzed through TM-helix prediction. All the genomes
appear to have similar patterns of usage for these
folds. The occurrence of a particular membrane-
protein fold falls off rapidly with more TM-helices,
according to a Zipf ’s law, and there are no marked
preferences for folds with particular numbers of
TM-helices (such as 7-TM proteins).

Limitations of the approach

The small, incomplete number of known folds.
There are a number of limitations to the fold-usage

analysis presented here. First, only a relatively
small number of folds can be surveyed, involving no
more than a fifth of the ORFs in a genome. (This
number would be even smaller if one were to restrict
attention to just the ORFs in a genome that have
been studied directly by crystallography or nuclear
magnetic resonance. For example, it is currently 52
out of 6,218 for yeast, as reported by Sacch3D.85)

The situation is expected to improve in the future
as new structures are determined, but it will be a
while before all the folds in a genome are known—
especially considering that the increase in new folds
is much slower than the increase in new struc-
tures.68 An important corollary of this is that the
absolute counts found in a given genome survey are

Fig. 2. Fraction of known families, folds, and superfolds
present in a given number of genomes. Note how superfolds are
shared to a greater degree between genomes than are folds, and
likewise, how folds are shared more than sequence families. The
data in this figure are derived from the table below, which gives the
absolute number of folds present in a given number of genomes.
(The graph shows the absolute number in the table divided by the
total.) For instance, the third line indicates that 23 of 338 known
folds (7%) and 54 of the 990 sequence families (with known fold)
(5%) are present in exactly three genomes.

Present in this
many genomes fold fam. fold-a fold-b SF

0 98 443 27 16 2
1 60 192 9 15 1
2 32 82 15 4 4
3 23 54 6 3 3
4 27 53 4 6 3
5 17 50 3 2 0
6 27 49 6 0 3
7 24 41 4 5 2
8 30 26 1 4 7

Total 338 990 75 55 25
Total (1-8) 240 547 48 39 23
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(usually) an underrepresentation of the true num-
bers. Furthermore, they are contingent on the evolv-
ing contents of the databank. Thus, over time as
more structures are added to the databank, one should
expect such statistics as the most common folds and
number of shared folds to change somewhat.

Comprehensive application of ab initio structure
prediction and advanced sequence-comparison and
fold recognition methods to complete genomes can
overcome somewhat the limitations of only knowing
a small number of folds,12,46 allowing one to survey

the complete inventory of proteins in an organism.
However, in its present form, structure prediction is
not a substitute for structure determination, espe-
cially in situations when the fold is completely new.
Moreover (as discussed below), using state-of-the-art
sequence comparison methods introduces a measure
of variability and uncertainty into the results, as
different methods will give different results at the
margin.

The uncertainties in the analysis resulting from
the small number of known folds are aptly illus-

Fig. 3. Cluster trees based on fold usage and other criteria.
The unrooted trees in this figure show the result of clustering the
genome based on a variety of measures for distance between
genomes. (The two-letter abbreviations for genomes are defined
in Table I.) Far left, genomes arranged according to patterns of
shared folds. Here the definition of distance between two genomes
is in terms of fold usage:

D 5 N(11)/(N(10) 1 N(11) 1 N(01)),

where N(11) is the number of folds in both genomes A and B, N(10)
is the number just in the first genome, and N(01) is the number just
in the second. Top middle, a tree based on global differences in
amino acid composition. The distance between two genomes A
and B is defined through the following formula for euclidean
distance:

D(AB) 5 ÎSi51
20 (C(i, A) 2 C(i, B))2

where C(g,i) is the composition of the ith amino acid in genome g.
Other measures of distance were also tried, in particular, the

Hellinger distance,125 which is the same as D (AB) except for the
replacement C(i, ·) = ÎC(i, ·). This treats small differences differ-
ently. However, it is found that the resulting tree topology is
insensitive to the choice of distance metric—providing a test of the
robustness of the results. Top right, just like the fold-usage tree but
now based on the number of the 990 sequence families that are
shared between genomes. Bottom middle and right, trees based
on sequence similarities from pairwise comparison of selected
families of orthologous sequences in the genomes, for which a fold
is known. Consider the bottom middle tree first. This is for
alanyl-tRNA synthetase, which has the class II synthetase fold. Its
sequences were selected from the COGS database (specifically
all sequences from COG0013 except YNL040w).16 The distance
between a pair of sequences was defined as 1/(S 1 C), where S is
the Smith-Waterman score after a global alignment and C is the
mean Smith-Waterman in doing global alignments of all proteins of
this length (from the all-vs.-all102). The bottom right tree is similarly
constructed. It corresponds to ribosomal protein S17, which has
an OB-fold. Its sequences were selected from COG0186 (all
sequences except YDR025w and YMR188c).
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trated in Table V. This shows the top 10 folds in yeast
calculated two ways, as done here versus as done for
the Sacch3D database.85 The differences between the
two lists, which are described in detail in the table

footnote, are easily understood and illustrate well
how the exact ordering of the top 10 list depends on
two factors: the sequence-structure comparison meth-
ods used and the contents of the current database of

Fig. 4. Pictures of the 10 most common folds that are shared
among all eight genomes. The figure is arranged from top row to
bottom row: three barrel folds, three classic a/b folds with helices
packed on either side of a central sheet, three folds with helices packed
onto a single face of a sheet, and one fold with a more complex

structure (class II synthetase).All folds are drawn with MOLSCRIPT126

using residue selections from Figure 1. They are somewhat simplified
so that coil geometry is smoothed out and insertions not packing
against the central sheet are deemphasized. Folds that are superfolds
are indicated by a black circle (‘‘s’’) in the lower right-hand corner.
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folds. Different comparison programs and fold data-
bases will give different numbers.

Biases in PDB and in the genomes. In addi-
tion to rendering the results here, in a sense, incom-
plete, the small number of known folds also means
that the results may be influenced to some degree by

the biases in the PDB. These biases are manifest in a
number of ways.

First and most simply, there is a considerable
disparity between how often a fold occurs in the
genomes (i.e., how many total matches it has) and
how often it occurs in the PDB (i.e., how many known

Fig. 5. Log-log graph showing the occurrence of membrane
proteins with a given number of transmembrane (TM) helices in
each of the eight genomes. The occurrence drops off sharply in a
similar fashion in all eight genomes, according to a Zipf-like law. A
fit to all eight is shown in the graph. The exact numbers that this
chart is based on are listed in the table below, in which the number
of proteins with a given number of TM-helices is expressed as a
percentage of the total number of sequences in the genomes. For
instance, the table shows that 6.6% of the 6,218 yeast ORFs
contain two TM-helices. The derived fit values (‘‘FIT’’ column) are
determined by minimizing the chi-squared statistic between a
linear model and the observed number of TM-helices in all the
genomes:

x2 5 o
n,g

(O(n, g) 2 E(n))2

E(n)

where O(n,g) is the observed fraction of n-TM proteins in genome
g and E(n) is the expected fraction. Obviously, some genomes fit
the model better than other ones. This can be quantified by
calculating a chi-squared statistic for the fit to each individual
genome (i.e., the same sum as above, but now not summing over
g, just n). This value is shown in the last row of the table (‘‘chi-sq’’).
It shows that MJ followed by MG are the two genomes that fit the
model worst—as might be expected given that these two organ-

isms also differ most from the others in terms of the usage of
soluble folds.

Num.
TM-
helices FIT SC MJ HI MP MG EC SS HP

1 17.3 19.1 13.7 14.8 16.4 17.3 18.1 23.2 15.6
2 4.9 6.6 2.8 4.1 4.7 3.4 6.7 6.3 5.6
3 2.4 2.4 1.6 2.5 1.8 2.8 2.8 2.8 1.6
4 1.4 1.5 0.3 2.0 2.1 2.4 1.5 1.5 0.8
5 0.9 1.1 0.3 1.0 1.3 0.4 1.6 0.9 1.2
6 0.7 0.9 0.1 1.2 0.3 0.6 1.0 0.8 0.3
7 0.5 0.6 0.1 0.4 0.6 0.9 0.4 0.4
8 0.4 0.7 0.1 0.7 0.3 0.4 0.2 0.1
9 0.3 0.7 0.1 0.3 0.6 0.2 0.1
10 0.3 0.6 0.1 0.3 0.1 0.3
11 0.2 0.4 0.1 0.1 0.1 0.1 0.1
12 0.2 0.3 0.1 0.2 0.0 0.1
13 0.2 0.2 0.1 0.1 0.1 0.1
14 0.1 0.1 0.1 0.0
15 0.1 0.1

num
ORFs 6218 1735 1680 677 468 4290 3168 1577
chi-sq 1.8 5.7 1.8 2.1 3.7 1.9 2.7. 1.7
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structures have this fold). This is indicated in Figure
1 (and in the web presentation). One can immedi-
ately see how different the common folds are in the
PDB versus in the genomes. This illustrates in a
direct sense the biases in the PDB—although these
sorts of biases are not expected to affect the results
(which are principally concerned with ‘‘membership’’
rather than absolute counts).

Second and more subtly, the composition of the
PDB is biased toward folds that occur in more
heavily studied organisms such as EC and SC. These
biases are probably reflected in some of the results,
specifically, in the finding that there are many more
known folds and unique folds in the bacterium HI
than in the archeon MJ, even though both of these
organisms have genomes of approximately the same
size.

Another subtle bias in the results here is in the
selection of genomes. The eight organisms picked
were the first with complete genomes to be se-
quenced, as has by necessity been done in all the
other multigenome comparisons to date (e.g., Ta-
tusov et al.16). A more balanced comparison would
perhaps have a more comparable amount of eukary-
otes and archaea to bacteria.

Prospects

Improvements in the results presented here will
have to wait for more data, more genome sequences,

and more determinations of structures. Despite these
limitations, comparisons of genomes in terms of
protein structure are certain to yield results about
the fundamental differences between organisms on a
molecular level. Currently more than 10 microbial
genomes have been completed, and at least 35 more
are being worked on,86 so there will be many possibili-
ties for comparison soon.

SEQUENCE AND STRUCTURE ANALYSIS
TECHNIQUES

A Relational Database of Genome Sequences
and Structure Assignments

Translated genome sequences were taken from the
web sites (Table I). The genome data are constantly
changing and are contingent on the current state of
the art in gene finding. The data used in this paper
reflect a particular snapshot of this ongoing process.
For instance, the E. coli data file used was version
M52, containing 4,290 ORFs. This is a more recent
version and contains a different number of ORFs
than one referred to in the official publication (M49,
containing 4,288 ORFs87). For yeast there is some
uncertainty regarding whether all of the ORFs in the
web site file are really genes. In particular, 5,888 of
the 6,218 ORFs are definitely believed to be genes,
but there is some question about the remaining
330.88 Furthermore, quite a number of yeast se-
quences (initially) annotated as ORFs are, in fact,

TABLE V. The Yeast Top 10, Determined Two Ways†

Common yeast folds Rep. struct.
GeneCensus Sacch3D, SGD

Diff.Count Rank Count Rank

Protein kinases (cat. core) 1hcl 110 1 109 1
NTP hydrolases with P-loop 1gky 69 2 52 2
Classic Zn finger 1ard 55 3 34 7 ●
Ribonuclease H-like motif 2rn2 54 4 30 8 ●
Rossmann fold 1xel 46 5 41 5
Zn2/Cys6 DNA-binding domain 125d 46 6 30 9 ●
7-Bladed b-propeller 2bbk-H 46 7 0 — ,
TIM-barrel 1byb 36 8 39 6 ●
Ferrodoxin-like 1fxd 28 9 43 4 ●
DNA-binding 3-helix bundle 1enh 22 10 22 10
Long helix oligomers (coils) 1zta 1 — 47 3 ,

†This table shows the top 10 folds in yeast calculated two ways, as done here (GeneCensus) versus as done for the Sacch3D database,
which is part of SGD.85 Columns 1 and 2 give the name for the fold, as determined by SCOP,58 and a representative structure with this
fold. The columns labeled ‘‘GeneCensus’’ show the top 10 folds determined with the methods used here: FASTA with e-value cutoff of
0.01 and strict overlap criteria, using a clustered version of the SCOP 1.35 database. The columns labeled ‘‘Sacch3D’’ show the top 10
folds calculated by different methods: WU-BLAST with a P value cutoff of 10e-4, using a differently clustered version of an earlier
SCOP database, 1.32. For both GeneCensus and Sacch3D both the number of folds found (‘‘count’’) and the rank in the top 10 list are
shown. There is broad agreement between the two top 10 lists. However, there are some differences. These are flagged in the final
column. The minor differences (indicated by ‘‘●’’) are the five folds that have slightly changed rank within the top 10. In comparison
with BLAST, FASTA appears to be a bit better in finding homologues for the classic Zn finger, ribonuclease H-like motif, and the
Rossmann fold, and a bit worse for the TIM-barrel and ferrodoxin-like folds. The two major differences (indicated by ‘‘,’’) are more
substantial and warrant explanation: 1 propeller fold. The Sacch3D list does not have any ‘‘7-bladed b-propeller’’ folds, because of new
structures that were added to SCOP between release 1.32 and 1.35, in particular the structure of transducin; this difference thus
illustrates how the top 10 lists evolve with the growth of the PDB; and 2 helix oligomers. The Sacch3D list has many more long helix
oligomer folds. These are small ‘‘folds’’ such as coiled-coils and leucine zippers. These undoubtedly occur in yeast in great frequency.
However, they are very small in size—e.g. the representative coiled-coil in 1zta is only 30 residues. This makes them particularly
problematical to define as a fold and to find with sequence searching programs. The difference between the BLAST and FASTA results
illustrates dramatically how certain programs may differ in finding these marginal folds.
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transposons, which should properly be segregated
from the rest of the proteome.89

Structures were taken from the PDB via the PDB
browser.67, 90 Domain fold and class definitions were
taken from SCOP (version 1.35, May 1996).9,58,91

Specific values quoted about the composition of the
PDB, e.g., that it has 5,493 total structures and 222
T4 lysozyme structures, refer to the state of the
databank when SCOP 1.35 was built. Core struc-
tures for each domain were based on refinement of
structural alignments.12,30,92,93

Analysis and processing of the data were greatly
expedited by the use of a simple relational database,
implemented in DBM, Perl594 and mini-SQL (http://
Hughes.com.au). This was described previously.12 It
has tables cross-referencing sequence identifiers,
structure matches, TM-helix positions, and so forth,
as well as cross-tabulation reports giving the occur-
rence of various patterns. Most of these tables and
reports will be made available over the Internet (as
text tables and via a simple query interface) from the
following URL: http://bioinfo.mbb.yale.edu/genome.
The tables are structured in such a way that all the
genome features (e.g., location of a TM-helix or PDB
match) are annotated in a consistent fashion, with
thresholds and scoring schemes applied consistently
over multiple tools. This attempt at consistency is
similar to what has been achieved in other genome
annotation systems that aim to integrate multiple
tools.29,95

Matching to Known Structures

All sequence comparison was done with the FASTA
program (version 2.0) with k-tup 1 and an ‘‘e-value’’
threshold of 0.01.96,97 The e-value describes the
number of false positives expected in a single data-
base scan, so a value of 0.01 means that about 1 out
of 100 cluster linkages will be in error.9,98–102 This
error rate has been verified by empirical tests on a
database of known protein relationships and is simi-
lar to the thresholds used in other multigenome
comparisons.9,16,98 Probabilistic scores, such as the
e-value, should give similar results to more conven-
tional scores, such as percent identity, but they have
been shown to be better calibrated and more sensi-
tive for marginal similarities, taking into account
compositional biases of the databank and the query
sequence.99,102–104

There are other, potentially more sensitive, meth-
ods of comparing sequences to structures than
FASTA, e.g., profiles, Hidden-Markov models, motif
analysis, secondary structure matching, and thread-
ing.105–110 A number of these were tested, and as
expected, they find more homologues for certain
folds. However, the sensitivity improvement is not
uniform over all folds. This is not advantageous for a
large-scale census in which uniform sampling and
treatment of the data are more important than
sensitivity. In this instance one is more concerned

with accurate relative numbers than with absolute
values. Cobbling together a census through the use
of a disparate collection of tools and patterns creates
the problem of devising consistent scores and thresh-
olds. This is particularly acute in the case of manu-
ally derived sequence patterns and motifs, since an
expert on a particular fold or motif would expect his
or her pattern to find relatively more homologues
than a pattern not constructed by an expert. The
approach here, applying the same objective proce-
dure to each fold, circumvents these problems to
some degree. Furthermore, it has the added advan-
tage that it can be performed automatically without
manual intervention and, consequently, can easily
be scaled up to deal with much larger data sets.

Another issue to consider with regard to matching
sequences to structures has to do with the fact that
protein structure is fundamentally arranged around
the level of folding domains whereas statistics for
genomes are often calculated and best understood in
terms of the number of genes. For instance, when
one talks about how prevalent the kinase and Ross-
mann folds are in the yeast and E. coli genomes, one
is implicitly comparing the number of matches that
known kinase and Rossmann fold structures have in
the ,6,200 yeast ORFs relative to the ,4,300 E. coli
ORFs. However, it is possible for a single gene to
contain a number of kinase fold domains or to
contain simultaneously both a kinase and Rossmann
fold. Thus, the total number of domains in a genome
is probably a better standard for these comparisons.
Unfortunately, this number is not known. However,
it is known that the number of domains is not related
simply to the number of genes. For instance, on
average a protein is about 50% larger in yeast than
in E. coli (317 vs. 466), meaning that there are
probably twice as many possible domains in yeast as
in E. coli. Here an intermediate approach is taken.
The statistics are reported in terms of the number of
domains matched but reference is always made to
the number of ORFs in the genome.

Clustering and Trees

The structures in the PDB were clustered into 990
representative domains. The few membrane protein
structures in the PDB were excluded from this
clustering so that all the membrane proteins would
be identified, in a uniform fashion, by prediction.
(This is not expected to be a major factor as, for
instance, the yeast genome contains only a single
homologue to a known membrane protein structure).
The clustering was similar in spirit to the many
previous divisions of the PDB into representative
chains.68,98,111–113 However, a slightly different mul-
tiple-linkage algorithm was used.114 It was designed
to be internally consistent with the search method
used to identify homologues in the genomes, using
the same similarity criteria (a FASTA e-value thresh-
old). The clustering algorithm takes the results of an
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all-vs.-all comparison of the PDB and creates a
graph that has one vertex for each sequence and one
edge for each similarity score. Each vertex starts out
as a cluster of size one. Since sequence similarity
scores (i.e., e-values) are not commutative, this di-
rected graph is converted to an undirected graph by
removing the better scoring edges between pairs.
Then, each edge is considered in turn, and the two
clusters associated by this edge are merged into a
single cluster if every member of the first cluster has
a good scoring edge between it and every member of
the second cluster, and vice versa. The edges are
considered in order of decreasing similarity. This has
the advantage that close relationships are consid-
ered before more distant ones, ensuring that distant
relationships are not erroneously used to add a
member to a cluster when there exists (for that
member) a much closer relationship that would lead
to an alternate clustering. Furthermore, this algo-
rithm will produce the same result on the same data
set every time, i.e., it is not affected by the order in
which the data is traversed.

Trees based on distance matrices were built with
simple UPGMA clustering using the Kitsch pro-
gram, which is part of the Phylip package.115,116

Trees were built on the basis of the difference in
amino acid composition vectors, as described in the
legend to Figure 3. Di-amino acid composition was
also used and gave a similar tree.

After the clustering was completed, it was found
that the PDB consisted of 990 nonhomologous do-
mains, each of which represents a single sequence
family. These 990 domains were grouped into 338
fold families by the structural relationships in
SCOP.58 Each of the 338 folds can be ranked in terms
of how many of the 990 sequence families it contains.
It was decided to define a superfold as one of the top
25 folds in terms of the number of associated se-
quence families. Each of these contains at least 10
sequence families. This threshold is arbitrary and is
similar but not identical to past usage.59

Transmembrane Helix and Low-Complexity
Region Identification

Transmembrane segments were identified using
the GES hydrophobicity scale.117 The values from the
scale for amino acids in a window of size 20 (the
typical size of a transmembrane helix) were aver-
aged and then compared against a cutoff of -1
kcal/mole. A value under this cutoff was taken to
indicate the existence of a transmembrane helix.
Initial hydrophobic stretches corresponding to signal
sequences for membrane insertion were excluded.
(These have the pattern of a charged residue within
the first 7, followed by a stretch of 14 with an average
hydrophobicity under the cutoff.) These parameters
have been used, tested, and refined on surveys of
membrane protein in genomes.50,53,55

Low-complexity sequences were identified with
the SEG program65,118,119 using the standard param-
eters K(1) 5 3.4 and K(2) 5 3.75, and a window of
length 45. These parameters are the ones used to
find ‘‘long’’ domain-size low-complexity regions. The
average size of a low-complexity region found here is
,110 residues. Many of these transmembrane re-
gions are also low-complexity regions (almost half).
Taking a conservative approach, it was decided to
annotate these doubly identified regions as low-
complexity, not as transmembrane. This will tend to
reduce the total amount of identified TM-helices.
This is especially true for MJ, which has the largest
amount of low-complexity regions.
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