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Toward a Systematic Definition of Protein
Function That Scales to the Genome Level:
Defining Function in Terms of Interactions
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The ultimate goal of functional genomics is to elucidate the
function of all the genes in the genome. However, the current no-
tions of function are crafted for individual proteins. The degree
to which they can scale to the genomic level is not clear. In this
paper, we review the diverse approaches to functional classifica-
tion, focusing on their ability meet this challenge of scale. Our re-
view emphasizes a number of key parameters of the systems: their
accuracy, comprehensiveness, level of standardization, flexibility,
and support for data mining. We then propose an approach that
synthesizes a number of the promising features of the existing sys-
tems. Our approach, which we call a function grid, is based on
the notion of defining a protein’s function through molecular inter-
actions—specifically, in terms of its probability of interaction with
various ligands, the list of which can be expanded infinitely. To illus-
trate how our function grid can be used in genome-wide prediction
of function, we construct a grid of yeast genes; combine it with other
genomic information, including sequence features, structure, sub-
cellular localization, and messenger ribonucleic acid expression;
and then use decision trees and support vector machines to predict
deoxyribonucleic acid binding.
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I. INTRODUCTION

The recent flood of genomic sequence and structural data
has shifted the research focus of global-scale biology from
deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) and
proteins, and has presented the challenge for bioinformatics
to turn data into knowledge, i.e., integrate the ever-growing
data to ascribe functions of proteins, cells, and ultimately
organisms [1]. Exactly how function is defined on a global
scale is particularly important. The definition of protein
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function has progressed rapidly in recent years toward
systematic representation, and is still under intensive study
and debate. In this paper, we review the pros and cons of the
currently established systems of functional representation
and project a gridlike structure that defines protein function
through molecular interactions.

Protein function can be determined by experimental means
or through homology-based annotation transfer.

EXPERIMENTAL METHODS FORGENOMIC FUNCTION

DETERMINATION

Experimental approaches to the analysis of gene function
on a genomic scale include oligonucleotide and com-
plementary DNA (cDNA) microarrays, gene disruption
through transposon insertion [2] or deletion [3], [4], yeast
two-hybrid assays [5]–[8], proteome microarrays [9]–[11],
and the tandem affinity purification (TAP) tagging method
[12], [13]. These methods each aim at defining gene function
from different angles; therefore, each has its own strengths
and weaknesses. Oligonucleotide and cDNA microarrays
measure messenger RNA (mRNA) expression on a genomic
scale under various conditions, and thus indirectly indicate
each gene’s involvement in certain biological processes,
and which genes may have related cellular function. Yeast
two-hybrid assays explore protein–protein interactions in
a pairwise fashion, whereas TAP tagging is useful for de-
tecting protein complexes of two or more proteins. Proteome
chip can measure both the biochemical activity of proteins
and the interaction of proteins with other molecules, such as
other proteins, metabolites, or drugs. All these approaches
aim to elucidate gene function in terms of molecular in-
teractions, the caveat being that the experimental systems
do not exactly mimic physiological conditions; therefore,
the results obtained may not agree with individualin vivo
assays. Gene disruption measures the resulting phenotype
following disablement of each gene and thereby explicates
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gene function in terms of physiological activity of the or-
ganism. However, this is applicable to only a subset of genes
whose interruption causes discernible phenotypic changes.

Computational approaches can be used to organize the
genome-scale data into clusters of functionally related genes
or to indicate the involvement of genes in certain biological
processes, whereas the precise function of a gene needs to be
determined through either individual experimental assays or
homology-based prediction.

II. A NNOTATION TRANSFER FORFUNCTIONAL GENOMICS

The function of proteins of known sequence has been
experimentally determined for only a small fraction of
them. For a larger fraction of proteins, functional annotation
is transferred based on the idea that proteins of similar
sequence and structure are presumably descended from a
common ancestral protein, and have related functions. In
practice, annotation transfer has been made possible by
the exponential growth of the number of fully sequenced
genomes. Initially, the best hit in database comparisons
based on simple sequence similarity was used for annotation
transfer [14], [15]. This straightforward approach is usually
credible when the compared species are relatively close
phylogenetically [16]. However, at a larger phylogenetic
distance, the situation is complicated by the occurrence of
gene duplications [17]. More robust algorithms became
increasingly available, often focused on the existence of
key motifs and patterns associated with function, followed
by structure modeling [18]–[20]. Functional linkage can
also be detected through phylogenetic profiling, analysis of
fusion pattern of protein domains, and the gene neighbor
method (for a review, see [21]). Success in this field was
facilitated by the tremendous growth in the number of
known three-dimensional protein structures.

However, much caution needs to be taken in annota-
tion transfer, in that the relationship between sequence
or structure similarity and functional similarity is not as
straightforward as that between sequence and structure
similarity. Incorrect annotation transfer could result in pro-
gressive corruption of genome databases, as the error could
be carried over to other proteins when the errant proteins are
used as basis for further annotations [22]–[24]. Although
a clear, well-characterized relationship exists between
sequence and structure similarity, the sequence-function and
structure-function relationships are much more challenging
to characterize explicitly. One limitation to the accuracy of
functional annotation transfer is that a minimum similarity is
required to reliably predict protein function. For protein pairs
that share the same fold, usually 30%–40% sequence iden-
tity is required for function to be conserved precisely [25],
[26]. Examples also exist where proteins of high sequence
and structural similarity perform disparate functions, such
as lysozyme and a-lactalbumin, or proteins with different
structural folds have identical function, such as aubtillisin
<<<AU: PLEASE VERIFY “AUBTILLISIN”>>> and
chymotrypsin [27].

Another limitation lies in the vague definition of “func-
tion” itself. The rapidly growing number of fully sequenced
genomes calls for the development of a comprehensive
system for functionally classifying proteins that support
interoperation of genomic databases.

III. SYSTEMATIC REPRESENTATION OFPROTEIN FUNCTION

Traditionally, biologists consider protein function as a
simple phrase, often indicated by the name of the gene, such
as mkk1 [mitogen-activated protein (MAP) kinase kinase]
or tbf1 (TTAGGG repeat binding factor). However, often the
name of a gene is not directly related to its function and can
be misleading. Sometimes one who discovers a gene may
name it arbitrarily, such as theDrosophilagenesYippee, for
the reaction of a graduate student upon cloning it, orStarry
Night, for the swirling hair pattern resulting from mutation
of the gene, which resembles the painting by Van Gogh [28].
More often, the name is based on how a gene was identified,
such as thehsl genes (histone synthetic lethal), which may
have something to do with its function in a very unclear way.

When the function of a gene cannot be inferred from its
name, one has to resort to database records or the literature.
Early functional annotation tended to be recorded as simple
phrases, which are nonstandard, highly unstable, and have
no organized structure among functions. Moreover, function
has been described from different angles, depending on the
experimental perspective. Biochemists characterize protein
function in terms of molecular interaction. Cell biologists de-
scribe protein function as its role in a cellular process. Ge-
neticists characterize genes by the phenotype of their muta-
tions. Standard ontology systems that integrate these various
conceptualizations in genomics and define exact specifica-
tions of function need to be established in order to facilitate
cross-query and annotation transfer as well as a variety of
projects that entail interoperation of the ever-increasing bio-
logical databases.

IV. HIERARCHICAL REPRESENTATION OFPROTEIN

FUNCTION

One approach is the hierarchical representation adopted
by most functional ontologies such as the Gene Ontology
(GO) Consortium [29], the Munich Information Center for
Protein Sequences (MIPS) Functional Classification Cat-
alog, [30] and the Enzyme Commission (EC) classification
[31]. Fig. 1(a) shows a simplified hierarchical structure
that Wilson et al. [26] adopted to represent enzyme and
nonenzyme function. Sharing of classification numbers
indicate functional similarity. One can trace up and down
the hierarchy to find whether one function is part of another
function, and whether or not (but not quantitatively) there is
any commonality between two functions, i.e., whether they
descend from the same broad function.

The ENZYME system developed by the EC classifies
enzymes by reaction type, and can be applied to proteins
in many different organisms [31]. However, it is applicable
only to enzymes, and has two major drawbacks. First, it does
not consider catalytic reaction mechanisms, and therefore
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Fig. 1. Systematic representation of protein function. (a) Hierarchical scheme for functional
classification, adapted from [26]. In a tree-structured schema, functional similarity is measured by
the height of common ancestor. In practice, the path of each node from the root is encoded into a
classification number, and comparison is done by scanning the classification numbers from left to
right. If two proteins are both enzymes or both nonenzymes, then they possess general functional
similarity. If they share the first component of their classification numbers, then they are in the same
functional class. If they share the first three components of their enzyme numbers (or the equivalent
for nonenzyme numbers, depending on category) then they have the same precise function.

often ignores obvious similarities [32]. Second, it presumes
a 1 : 1 : 1relationship between gene, protein, and reaction,
while an enzyme can be multifunctional, or an enzyme can
be formed by polypeptides from two different genes [26].

The functional role categories developed at Gen-
ProtEC for E. coli (http://genprotec.mbl.edu/) and
the MIPS Functional Classification Catalog for yeast
(http://mips.gsf.de/proj/yeast/catalogues/) are organized
according to a hierarchical decomposition of cellular
processes. These classifications integrate enzyme and
nonenzyme functions from the start and are widely used.
However, they are each applicable to only a single organism,
and therefore cannot be readily applied in annotation
transfer.

The Gene Ontology Consortium has been highly suc-
cessful in creating a structured and precisely defined
controlled vocabulary for describing gene function across
several organisms [29]. The GO project started as a joint
project between FlyBase, theSaccharomycesGenome Data-
base, and Mouse Genome Informatics, attempting to merge
the fly, yeast, and mouse functional classification schemes.
As of December 2001 it has integrated genes from seven
organisms; participating groups including theArabidopsis

Information Resource, Pombase, WormBase, Compugen,
and the Institute for Genomic Research, and is closely
integrated with InterPro, which facilitates maintenance of
the association of protein motifs with functional descriptions
[33].

GO classifies functions as a directed acyclic graph (DAG).
Nodes can often be reached from multiple paths, which
facilitates the representation and comparison of genes that
have multiple functions or that are involved in more than one
process. GO classifies genes into three parallel categories,
i.e., three DAGs: biological process, molecular function, and
cellular component. This allows for defining the function of
a gene at various levels, including its biochemical activities
and biological roles as well as cellular structure.

V. NETWORK GRAPH REPRESENTINGPROTEIN FUNCTION

Another approach to global representation of gene func-
tion is through network graphs, including pathway maps and
protein–protein interaction maps. These graphs differ from
the hierarchical representation in that each node is not a func-
tion, but a protein or a substrate/product of a reaction. The
link between two nodes indicates an interaction. They can
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Fig. 1. (Continued.) Systematic representation of protein
function. (b) Yeast protein interaction network, adapted from
[35]. Insets show close-up of regions highlighted by boxes. Cell
structure proteins are colored in red. Proteins involved in galactose
regulation are colored in blue. Signal-transduction pathways (or at
least protein contact paths) can be inferred from this diagram.

provide a framework from which complex regulatory infor-
mation can be extracted.

One example of a pathway graph is EcoCyc, an ontology
that describes metabolic pathways and other cell functions of
theE. coligenome by encoding information about the molec-
ular interaction ofE. coli genes [34]. It uses distinct frames
to represent the molecule and its chemically modified forms,
and then models its interactions by labeling it substrate, cat-
alyst, modulator, or cofactor in a reaction. One can choose to
view the global structure of the entire network or to search
for the position of a specific gene in its local network.

Protein–protein interaction maps represent a population
of interacting proteins displayed as networks or circuits.
An example generated by Tuckeret al. [35] is shown in
Fig. 1(b). The yeast two-hybrid system is one of the major
methodologies for large-scale analysis of protein–protein
interactions. Interaction maps combining yeast two-hybrid
studies with previous annotations have been generated
[6]. The more recently developed proteome microarray
technology allows for direct analysis of a variety of inter-
actions, including interactions between proteins [9]–[11].
There are several public databases containing protein

interaction maps, including Myriad’s Pronet Database
(http://www.myriad-pronet.com/), Curagen’s Pathcalling
Yeast Interaction Database (http://portal.curagen.com),
the Biomolecular Interaction Network Database (BIND,
http://www.bind.ca/), and the Database of Interacting Pro-
teins (DIP, http://dip.doe-mbi.ucla.edu/).

Protein interactions have also been predicted by com-
putational methods based on genomic sequence [36] or
mRNA expression [37]. We found that gene expression data
are sometimes more meaningful when they are grouped
under a protein complex scheme rather then a functional
classification scheme (see Fig. 2). A comparison of the
MIPS functional catalog with the MIPS complexes catalog
shows that there are many proteins assigned to more than
one function, but there are only very few proteins that
are members of more than one protein complex. A related
observation is that protein complexes often form a functional
unit as a whole, whereas the individual proteins exhibit no or
only a reduced number of functions themselves. Functional
versatility is thus often created on the level of protein
complexes. These properties of the complexes catalog often
allow a less ambiguous and more straightforward analysis
of the observations of genomic experiments, such as cDNA
microarray expression data. However, a disadvantage of
the complexes classification is that it characterizes a much
smaller number of proteins than the functional classification
(in MIPS, 3687 proteins are functionally classified, whereas
only 1137 proteins are assigned to complexes).

Protein–protein interaction maps have not only confirmed
the existence of previously known complexes and pathways
but have also shed light on the discovery of new complexes
and crosstalk between previously unlinked pathways [38],
[39]. An interaction map generated in one species can po-
tentially be used to predict interactions in another species,
presuming that large numbers of physically interacting pro-
teins in one organism have evolved in a correlated fashion
so that their respective orthologs in other organisms also in-
teract [40].

VI. L IMITATIONS OF THE CURRENTONTOLOGY SYSTEMS

Up to now, ontologies that define gene function as
hierarchical structure are all based on natural language.
Although a protein’s function can be defined with relative
accuracy through a controlled vocabulary and cross-linked
hierarchical structures, the use of natural language limits the
precision of function definition and potential applications of
computational automation.

The most basic question in functional computation is
whether two proteins have the same function. This appears
easy to answer by directly comparing GO terms or MIPS
functional categories. However, this functional equality
is relative and approximate, since natural language-based
ontologies may not be fine-tuned enough to reflect the
complex cellular function and regulation of each gene. To
answer the question of functional equality more precisely,
one needs to integrate functional information from a variety
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Fig. 2. Protein complex versus functional classification. (top)
Undirected graph representation of the second hierarchy level of
the MIPS complexes catalog, where each node represents one class
(i.e., protein complex). Nodes are connected to one another if two
protein complexes share at least one protein, in the sense that two
copies of the same protein occur in each of both complexes. It
is obvious that most protein complexes represent protein classes
disjoint from other protein complexes. Furthermore, for those
protein complexes that share common proteins, the amount of
overlap is relatively small. (bottom) Graph representation of
the second hierarchy level of the MIPS functional catalog, with
each node representing a functional protein class and each edge
indicating at least one shared protein. Although some functional
classes are not connected to others, there is a large cluster of
functional classes that are strongly interrelated.

of resources, including pathway and interaction maps, which
is no easy task.

For two nonidentical but related functions, the degree
of similarity is much harder if not impossible to answer
using natural language-based ontologies. When comparing
two functional GO terms, their names and positions in
the GO hierarchy often do not provide full information on
the level of similarity between them. For example, both
hexokinase (GO : 000 439 6) and carbamoyl–phosphate
synthase (GO : 000 408 8) are adenosine triphosphate (ATP)
–binding proteins, but such information is not available
from the GO hierarchy. In this case it would be helpful to
resort to EC, which lists the known reactions catalyzed for
each enzyme class and contains information on molecular
interactions. Moreover, there are multifunctional proteins
or proteins involved in multiple cellular processes that can
be associated with more than one GO term in each of three
level categories. On the other hand, certain functions may
be meaningful only in terms of protein complexes. In such
cases the interaction network graph may provide a more
accurate picture of the protein. Another situation is that
two genes may have the same cellular function but are

under different regulation. For example, myoglobin and
hemoglobin are both heme proteins that bind molecular
oxygen. However, oxygen binding of hemoglobin is under
regulation of allosteric effectors including oxygen, iron,
CO and 2,3-bisphosphoglycerate, whereas there is no
allosteric regulation with the oxygen-binding property of
myoglobin [41].

Consider the following more complex questions: Is the
function of protein X more similar to protein Y than to pro-
tein Z? Among a group of proteins with known function,
are there subgroups that are more closely related? Can novel
function be deduced based on known function and other fea-
tures of a protein? These questions can be easy to solve if
function is represented using numeric values to allow the use
of standard data-mining algorithms. Here we propose a grid-
like structure that represents protein function in term of in-
teraction probabilities and discuss its potential application in
function prediction.

VII. CONSTRUCTION ANDPOTENTIAL APPLICATION OF THE

FUNCTIONAL GRID

In our functional grid, the proteome interaction map is rep-
resented as a matrix, as each protein is associated with a row
vector that consists of the probability of binding to various
ligands [see Fig. 3(a)]. Denote by the set of proteins, and

the set of binding ligands. The functional gridcan be
defined as mapping

as

As an initial effort, we constructed the grid with the com-
plete proteome from the budding yeastSaccharomyces cere-
visiae. The interaction data were collected from GO, EC,
yeast two-hybrid system interactions [5], [8], [39], and pro-
teome chip experiments [11]. The dimension of each row
vector can potentially be infinite, as it expands when exper-
imental data for previously unknown ligands become avail-
able.

Functional similarity between two proteins can be defined
by the cosine of the angle between the two corresponding
vectors. Then proteins can be grouped according to function
similarity using a number of clustering methods.

The interaction grid can be combined with sequence and
structural features and cellular localization, as well as ex-
pression data, to make up a more comprehensive grid, which
can be used for data mining as we deduce novel interactions
based on known ones. Fig. 3(b) is a schematic representation
of how DNA-binding proteins can be predicted combining
the interaction grid with other genomic datasets.

Several issues need to be addressed in designing the in-
teraction grid. First, there needs to be a systematic way to
define a binding probability, which determines the accuracy
of the calculations. Information gathered from previous an-
notations or experiments, represented in the form of either

NING et al.: TOWARD A SYSTEMATIC DEFINITION OF PROTEIN FUNCTION THAT SCALES TO THE GENOME LEVEL 5
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of an interaction grid. The function of each protein is defined as a row vector that consists of
the probability of binding to various ligands. The grid is filled with data collected from GO,
EC, yeast two-hybrid system interactions, and proteome chip experiments. For information
gathered from GO, based on the GO evidence code associated with each entry (defined at
http://www.geneontology.org/GO.evidence.html), we assigned probabilities from 0.8 (NR) to 1.0
[traceable author statement (TAS) and inferred from direct assay (IDA)<<<AU: ARE THESE
ACRONYMS SPELLED OUT CORRECTLY?>>>]. Using the data from proteome chip experiments,
we define the binding probability of each protein(P ) by normalizing its binding signal(S ) against
the lowest value of all proteins that are known to bind the ligand(S ):P = min (S =S ; 1) : The
value is left empty when binding probability is unknown. The dimension of each row vector can be
expanded when experimental data for previously unknown ligands become available. (b) Schematic
display combining the interaction grid with other genomic information to predict DNA binding. The
interaction grid is combined with sequence features, expression data, and localization information to
predict DNA binding. Prediction results are compared with the GO annotation and the protein chip
data as a control. Each predication result can have several possible outcomes: consistent with the GO
annotation and the protein chip results (white); consistent with respect to only one of the two controls
(gray); inconsistent with both the GO annotation and the protein chip (black). In some cases, it may
be impossible to predict whether the protein binds DNA or not.

a phrase or signal intensity, should be converted to a value
between zero and one, depending on the source or nature
of experiments [see Fig. 3(a)]. By associating each binding
probability with an evidence field, which records where the
data were collected and indicates how the probability was as-
signed, we have created an evidence system similar to that of
GO.

Second, we need to consider what and how many ligands
to put into the grid, and the relationship between these lig-
ands. On the one hand, we want to collect every possible
piece of information on molecular interactions. In the mean-
time, these ligands need to be grouped into a hierarchical
structure, allowing the function grid to be viewed and mined
at multiple levels (see Fig. 4).

Third, the initial functional grid was constructed of yeast
proteins. When information on molecular interaction from
other organisms is collected, how are we going to integrate
them, i.e., should homologues be treated as different fields
of the same protein or as different proteins? Our decision is
to construct individual matrices for each organism and keep
evolutionary relations between homologues in another table.
This way the similarity and difference between interaction
partners among homologues can be easily calculated by cal-
culating the distance between the respective binding vectors.

The fourth point is concerned not so much with data
mining but more with the power of this interaction grid
system to represent gene function in the context of cellular
regulation. Apart from probability and evidence, each reac-
tion has two extra fields of action and condition, to indicate

6 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 12, DECEMBER 2002
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Fig. 4. Hierarchical organization of the functional grid. The fields in the functional grid can be
grouped into a hierarchical structure, so that the data mining can be performed at various levels. The
range of potential number of fields (columns) for each group is indicated in parentheses. Areas
where rapid expansion is expected in the near future are initalic.

(a)

(b)

Fig. 5. Representation of part of a signal transduction pathway. Here, we show (a) schematic
representation of some of the main components of yeast protein kinase C cascade and (b) how part of
this cascade is represented in the interaction grid. Mkk1 phosphorylates SLT2 when phosphorylated
by BCK1. SLT2 phosphorylates RLM1 SLT2 when phosphorylated by Mkk1 or Mkk2. RLM1 binds
DNA when phosphorylated by SLT2. “Link” in the evidence field refers to the original publication.

the reaction type and regulation of this interaction. Fig. 5
shows how two steps in the MAP kinase pathway involved

in the maintenance of cellular integrity [42] are represented
in the interaction grid.

NING et al.: TOWARD A SYSTEMATIC DEFINITION OF PROTEIN FUNCTION THAT SCALES TO THE GENOME LEVEL 7
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Table 1
Protein Properties Selected for DNA-Binding Prediction

Sequence features include amino acid compositions, biochemical properties, and entropy complexity measures based on the SEG program, secondary
structure prediction, and hydrophobicity scores on the GES scale. Interaction probabilities are assigned based on GO and EC annotation, and proteinchip
experiments. Expression data are collected from multiple sources.

VIII. C ASE STUDY—PREDICTION OFDNA BINDING

DNA-binding proteins play an essential role in the genetic
activities of an organism. Structural analyzes reveal a high di-
versity of protein–DNA complex geometries found in nature,
while the main mode of interaction in more than one-half
of the protein families is the interaction betweenhelices
and the DNA major groove [43]. The most significant DNA-
binding motifs identified include helix-turn-helix, zinc-coor-
dinating, and leucine zipper. A number of applications have
been developed to predict protein–DNA binding through the
search of particular motifs [44], [45] or a molecular docking
simulation [46], [47]. These methods have gained only lim-
ited success, largely because of the complexity of determina-
tion factors of protein–DNA binding. Also, they require that
the protein in question contain certain known DNA-binding
motifs or have its structure solved in an uncomplex form [43].

In this study, as an illustration of the data-mining ap-
plication of the functional grid, we applied supervised
learning algorithms to probe the possibility of predicting
DNA-binding activities of proteins that may not have a
distinct DNA-binding motif or solved structure, using our
combined functional grid. As a proof of principle, we

chose decision-tree learning for its ease of interpretation.
Straightforward rules can be inferred by traversing the tree
from root to leaf nodes. Moreover, classification can be
based on an arbitrary mixture of symbolic and numeric
values, and it is not necessary to scale the variables relative
to one another. The model is generally robust in the presence
of missing values, which is important because in many
cases the probability of interaction with certain ligands is
unknown [48].

We selected a training set of 156 DNA-binding proteins
and 154 non-DNA-binding proteins based on GO annotation.
Only proteins with the most reliable GO evidence (codes
TAS or IDA), and thereby having a DNA-binding probability
of 1.0, were selected as DNA-binding. Non-DNA-binding
proteins were randomly selected from proteins with
known molecular function that are not characterized as
DNA-binding proteins in GO.

We selected the following features as predictor: a total
of 53 sequence features, including amino acid composition,
hydrophobicity, occurrence of low-complexity regions, etc.;
probability of localization in one of the five generalized cel-
lular compartments [49]; expression data from 14 different

8 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 12, DECEMBER 2002
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proteins are indicated by the numbers to the left and right of each node, respectively. The inset
shows the complete tree, the upper section of which is pruned and used for rule extraction. The
bold path leads to DNA-binding proteins, and the dashed one leads to non-DNA-binding ones.
Nonmembrane nuclear proteins that bind to ATP are likely to bind DNA; proteins are predicted
not to bind DNA if they are not likely to be localized in the nucleus, do not bind RNA, and
have low standard deviation in diauxic shift.

experiments, including absolute value and standard devia-
tion in each experiment [50]–[53]; probability of interaction
with RNA, ATP, protein, phosphate, metal ion, nicotinamide
adenine dinucleotide, coenzyme A, and six phospholipids, as
summarized in Table 1.

A decision tree was constructed to partition the data, and
stratified tenfold cross-validation was performed, where
repeatedly a randomized 90% of the data was set for training
and the remaining 10% for testing. The cross-validation
approach resulted in an overall prediction success of
65%–70%. Only the top levels of the tree are significant
in terms of yielding a generalized concept and deriving
useful rules. Fig. 6 illustrates the upper five levels of the tree
built on 310 proteins and subject to cross-validation. Two
interesting paths are highlighted. Following the right path
of the tree, DNA-binding proteins are selected, provided
that they have a high probability of being localized in the
nucleus, are not likely to be membrane proteins, and bind
ATP. Non-DNA-binding proteins are selected by the left
branch of the tree that have low probability of being nuclear

proteins, do not bind RNA, and have low standard deviation
in diauxic shift. Apparently most of these findings are
consistent with the expected cellular location and molecular
interaction of DNA-binding proteins, in that DNA-binding
proteins should be located in the nucleus and many of them
are involved in transcription, which involves RNA and ATP
binding.

We also tried to predict DNA binding using the support
vector machine (SVM) algorithm. This algorithm, widely
used in pattern recognition, represents a method of finding
binary classification rules from examples, for which they can
guarantee the lowest error rate on new observations [54]. It
had previously been employed to predict functional classes
from gene expression data [55]. The data set applied to con-
struct the decision tree was divided in half. One half was used
to construct an SVM model using the SVM Light software
[56]. The trained network was tested on the other half. This
procedure was repeated ten times; the average percentage of
correct identifications was 72%.

NING et al.: TOWARD A SYSTEMATIC DEFINITION OF PROTEIN FUNCTION THAT SCALES TO THE GENOME LEVEL 9
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IX. CONCLUSION

The availability of fully sequenced genomes challenges
bioinformatics to elucidate the structure, interactions, and
functions of proteins on a genomic scale. Ontology systems
are needed that can facilitate calculation of functions together
with other biological data. Such ontology should aim at cap-
turing all dimensions of protein function and should keep up
with the phenomenal rate at which biological data are being
produced. Current functional ontology systems are mainly
based on natural language, which has limitations in the pre-
cision of function definition and therefore cannot readily sup-
port calculation of functional similarity.

We have proposed a grid-style representation of protein
function through molecular interactions, and proved in prin-
ciple that this functional grid can be combined with various
genomic data to predict new functions. One main concern
about constructing this grid is how to collect experimental
data on interactions and turn them into binding probability
with relative accuracy, which requires careful consideration.
With the rapid accumulation of proteome interaction data,
we expect a significant increase in the power of function pre-
diction. Therefore, we believe the development of this func-
tional grid system will prove highly valuable for global rep-
resentation and calculation of protein function in the postge-
nomic era.
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