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Abstract 

 

DNA microarrays are widely used in biological research; by analyzing differential hybridization 

on single microarray slide one can detect changes in mRNA expression levels, increases in DNA 

copy numbers, and the location of transcription factor binding sites on a genomic scale. Having 

performed the experiments, the major challenge is to process large, noisy datasets in order to 

identify the specific array elements that are significantly differentially hybridized. This normally 

requires aggregating different, often incompatible programs into a multi-step pipeline. Here we 

present ExpressYourself, a fully integrated platform for processing microarray data. In 

completely automated fashion, it will correct the background array signal, normalize the Cy5 and 

Cy3 signals, score levels of differential hybridization, combine the results of replicate 

experiments, filter problematic regions of the array, and assess the quality of individual and 

replicate experiments. ExpressYourself is designed with a highly modular architecture so various 

types of microarray analysis algorithms can readily be incorporated as they are developed; for 

example, the system currently implements several normalization methods, including those that 

simultaneously consider signal intensity and slide location. The processed data are presented 

using a web-based graphical interface to facilitate comparison with the original images of the 

array slides. In particular, ExpressYourself is able to regenerate images of the original 

microarray after applying various steps of processing, which greatly facilities identification of 

position-specific artifacts. The program is freely available for use at 

http://bioinfo.mbb.yale.edu/expressyourself. 
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1. Introduction 

  

Microarrays are widely employed, among other uses, to compare mRNA expression levels (1-

10), DNA copy number (11-21) and transcription factor binding in biological samples (10,22-

30). The concept underlying these experiments is straightforward; fluorescence-labeled nucleic 

acids in “test” and “reference” samples are probed simultaneously on a microarray slide, and 

their relative abundance is derived from the comparative fluorescence of the probe molecules 

hybridized to individual array elements. Though the technology is relatively new, several aspects 

of data analysis beyond the experimental stage are now well established; these include scanning 

the arrays to measure fluorescence intensity, quantifying the array images via densitometry 

algorithms (31-34), clustering similarly expressed genes (35-39) and integrating microarray data 

with genomic information (40-47). However, a topic still under much discussion is how to treat 

the raw numerical data immediately after scanning and quantifying the array images (46,48). 

 

Data processing aims to fill this gap.  In particular it serves three purposes: (i) to detect and 

minimize the level of noise associated with the experiments, (ii) to assess the quality of the data 

once the noise has been reduced, and (iii) to identify the array elements that are actually 

differentially hybridized.  

 

Here we present ExpressYourself, an automated platform for processing microarray data that is 

freely available over the web (http://bioinfo.mbb.yale.edu/expressyourself). The software 

performs correction of the background array signal, normalization, scoring, combination of 

replicate experiments, filtering problematic regions of the array and quality assessment of 

hybridizations. We incorporate novel and published algorithms that are reasonable, 

understandable and make minimal assumptions about the data. The program can handle gene 

expression, chromatin immunoprecipitated DNA probings (ChIp-chip), and most comparative 

genomic hybridization (CGH) data. The results are clear and easy to understand, and the 

graphical interface allows users to compare each processing step with the original slide images.  
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2. Data processing in ExpressYourself 

 

ExpressYourself processes the data in a sequential manner using the major steps shown in Figure 

1a. The stages can be broadly grouped into (i) noise reduction, (ii) quality control and (iii) 

differential hybridization scoring. We demonstrate the use of ExpressYourself using the data 

from a ChIp-chip experiment of the HCM1 transcription factor (9).  

 

2.1 Input data 

 

The data input to ExpressYourself comprise text files generated by image analysis software. 

Currently, the program recognizes files from Axon GenePix (32), QuantArray (49), Scanalyze 

(31) and UCSF SPOT (34) and produces the best results if input files are left intact (ie no data is 

deleted). Multiple files are accepted and may represent information for replicate experiments.  

 

We interpret the Cy5 and Cy3 signals of an array element as the median foreground minus 

background intensities for each dye (S  = Iforeground – Ibackground). The foreground intensity is the 

fluorescence of a spot within a defined area, usually described by a circle enclosing the spot, and 

the background is that of the immediate area surrounding the spot, usually described by a 

bounding box. The level of differential hybridization at each array element is determined as the 

relative signal between the two dyes.  

 

2.2 Noise reduction 

 

Individual spot and regional filtering 

 

Technological limitations in array production and experimental techniques mean that microarray 

slides are often imperfect. Nearly every experiment contains individual array elements of poor 

quality, comprising spots that are small compared to the rest of the array, have unusual 

morphology (ie non-round), exhibit uneven hybridization (ie doughnut or crescent-moon 

patterns), or have saturated signal intensity. Most image analysis software permits users to flag 

such array elements manually. But with up to 40,000 spots per slide, this is very time-consuming 
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and difficult to perform in a consistent manner. ExpressYourself automatically flags and, if 

necessary, removes poor quality spots. Manual flagging is therefore unnecessary, although the 

program will consider such flags if instructed by the user. Imperfections on the array can also 

extend beyond individual spots. Large dust particles, printing inconsistencies and scratches 

sometimes render entire regions of the array unusable. ExpressYourself detects and removes 

these flaws automatically (Figure 1b).  

 

Background correction 

 

Although we remove obvious defects before further processing, it is important, if possible, to 

correct minor imperfections confined to small areas so that we preserve the maximum amount of 

usable data (33,34,50,51). As mentioned above, the background signal is commonly defined as 

the average intensity of the immediate area surrounding each array element. Minor imperfections 

(very small specks, dust, and scratches limited to the vicinity of a spot) often distort background 

signals, making them extremely variable even between adjacent spots. Therefore the aim of 

background correction is to reduce the local background distortions that are restricted to single 

array elements, while maintaining the overall variability represented by gradual changes between 

bright and dark regions across the slide. We overcome this problem by calculating the average 

background signal from a wider area, typically spanning 3x3 to 5x5 spots (50). In doing so, we 

minimize the contribution of minor flaws to the background signal, and we remove most of the 

local distortions. Figure 1c displays the effects of correcting the Cy5 background intensity. Many 

regions of local variability are removed, but overall variation in array intensity remains.  

 

Cy5/Cy3 Normalization 

 

Once the signal intensities have been calculated using the corrected background, we can compare 

the relative contributions of the Cy5 and Cy3 signals. Ideally, the signals of the two dyes should 

be equal for nucleic acid probes that have equal concentration in the test and reference samples 

(ie the ratio, R = S1/S2, of the two signals should approach 1 for probes hybridizing to an equal 

degree in both fluorescence channels). In practice, the signals can be quite different. Dyes have 

different molecular characteristics, hybridization to the arrays can be non-specific or incomplete, 
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and there is spatial heterogeneity in the probing conditions across the slide. Normalization aims 

to compensate for these effects by applying a scale factor such that signals of probes with 

unchanged concentration are equal (48,50,52-58). The signals of the remaining array elements 

are scaled relative to the baseline set for the constant probes. Figure 1d shows a schematic of the 

example array before and after it has been normalized. 

 

A major issue in microarray normalization lies in defining the set of constant probes and this is 

reflected in the many approaches that have been published (see ref. (50) et al. for an overview). 

We prefer to use the “constant majority” method, which assumes that the majority of probes do 

not change in concentration. The method is generally applicable to many experiments as it is 

valid even in cases where up to 50% of probes have altered concentrations, does not require prior 

knowledge of which probes remain constant, and allows for intensity and spatial considerations 

(see below).  

 

At its simplest the method calculates the scale factor from the robust mean of all S1/S2 ratios, ie 

the distribution of all ratios is transformed so that it centers about 1. However, two particular 

issues must be addressed: signal intensity and array position. First, because the two dyes differ in 

fluorescent properties, the bias in ratios often depends on the signal intensity (48,56-59).  

Therefore, different scale factors must be used for array elements at different intensities.  

Second, the positional issue is due to differences in hybridization conditions across the slide 

(50,54,59), and it is common to observe array images in which hybridization of entire regions is 

dominated by one dye.  Thus different scale factors must be used for different regions of the 

physical slide.  To determine scale factors in each situation we employ local regression to 

determine a “best fit” for the data, using the LOWESS and LOESS packages (60-62).  In the 

former case, we calculate the local mean intensity ratio as it varies over a range of signals in two 

dimensions (Cy5 vs Cy3).  In the latter case, we determine the mean ratio as it varies across the 

surface of the microarray slide by fitting a three-dimensional curve to the data points. 
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Replicate array scaling 

 

Many array experiments are conducted in replicates; however, differences in sample 

concentrations, probing conditions and scanner settings mean that the range of signal intensities 

can be quite variable. Prior to combining replicate experiments we calculate the robust standard 

deviations of signals in each experiment and scale each so the widths of signal distributions are 

equal.  

 

2.3 Quality control 

 

It is useful to have an objective measure of data quality (Figure 1a) (50,52,58,63,64). First it 

allows the user to see how well the experiment has performed as this is not usually obvious from 

visual inspection of the slide images. Second, it assesses the degree to which the noise reduction 

steps have improved the data. Finally, by identifying the most serious problems, the user can 

modify future experiments to improve results. Here we introduce some of the data quality 

measures that we have incorporated into ExpressYourself to date.  

 

Percentage of good quality array elements 

 

The simplest quality metric is a basic calculation of the proportion of array elements and regions 

the filtering process has removed; the larger the proportion, the poorer the quality of experiment. 

By breaking down the numbers according to error type (eg spot diameter, homogeneity, 

saturation), we can determine the defective properties that are most problematic for a given 

array.  

 

Intra-array hybridization quality 

 

Many microarrays are designed with spots printed in duplicate, side-by-side. We gauge the 

consistency of hybridizations within the array by measuring the difference in signals between 

these duplicates (eg D = (Rdup1 – Rdup2)/(Rdup1 + Rdup2) ).  The mean of D2, <D2>, then 

summarizes the consistency of hybridization within the array.  Since we expect <D> = 0 then 
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Var(D) = Σ(Di-0)2 / N = <D2> so the consistency of hybridization can also be visualized as the 

width of the distribution of D.     

 

Replicate array hybridization quality 

 

We extend this measure to determine the consistency of replicate experiments, by calculating the 

difference in signals between equivalent spots across multiple slides. We construct an analogous 

quality score Di’ = (Rα,i – Rβ,i)/(Rα,i + Rβ,i) for spot i on slides α and β.  Again, the width of the 

distribution of D’ measures the quality of an experiment with respect to others, and allows users 

to decide whether the entire experiment should be removed from the dataset. Values for D’ can 

also be used to identify regions of a slide that are of particularly poor quality.  

 

2.4 Scoring differentially hybridized array elements 

 

The final step is to identify array elements that exhibit differential hybridization (Figure 1a). 

These ultimately correspond to those genes that have altered expression levels, chromosomal 

regions that have changed copy number or the locations of transcription factor binding sites, 

depending on the nature of the experiment. The major issue is to single out spots whose relative 

Cy5-Cy3 signals stand out from the experimental noise at sufficient statistical significance. 

 

ExpressYourself currently incorporates three scoring methods. The most simplistic and widely 

used approach is to define a ratio cut-off and identify the probes that exhibit fold changes greater 

than this threshold (3,65-67). Another popular approach is to use variations of Student’s paired t-

test to compare all signals from the test and reference samples (68-70). Differentially hybridized 

spots are identified as those exhibiting a p-value less than a user-specified cut-off. We also 

include a novel method for scoring differential hybridization (Figure 2b; manuscript in 

preparation). We standardize each spot’s ratio by dividing it with a local standard deviation; this 

deviation is determined as a function of the spot’s total intensity (S1 + S2). The standardized 

ratios are fit to a distribution and outliers at a user-defined p-value are identified as being 

differentially hybridized. The outliers are removed from the dataset and the entire process is 
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repeated with the new, smaller set of spots. The iteration continues until no new outliers are 

detected.  

 

3. The user interface for ExpressYourself 

 

ExpressYourself is accessed using a web-browser and Figure 2 displays elements of the user 

interface. The toolbar allows users to view the data at different stages of processing, and the 

corresponding output is presented in the main area of the web page (Figure 2a). In the centre of 

the display, we recreate the slide image using values from the input file, and it is updated through 

each processing step. Specific regions of the slide can be viewed in detail by clicking on the area 

of interest. Selecting individual spots can access data associated with each array element (eg 

name of array element, diameter and signal intensities). Distributions of the Cy5 and Cy3 signals 

are displayed at the right side of the page. The scoring page lists the differentially hybridized 

spots that are considered statistically significant, and also displays them as graphical plots 

(Figure 2b). The user can download the results in a text file for further analysis. The aim of the 

graphical interface is to enable users to visualize the data in the context of a microarray slide and 

statistical distributions. It facilitates comparisons of the processed data with the original slide 

images and allows them to track changes to spots of interest. In additional data quality pages, the 

schematics are particularly useful for uncovering position specific artifacts on the microarray 

slide.  
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4. Conclusions 

 

4.1 Summary  

 

Here we presented ExpressYourself, a web-based program for processing microarray data. We 

have incorporated novel and published algorithms to reduce the experimental noise, assess the 

quality of the data, and identify differentially hybridized array elements. The program can 

process data from most gene expression, ChIp-chip, and CGH experiments. The results are clear, 

and the graphical interface allows immediate identification of the most important features of the 

experiment.  

 

4.2 Future improvements 

 

ExpressYourself is continually updated as better processing methods are developed both within 

and outside our laboratory. Immediate plans include addition of clustering, and a visual tool 

linking array images to genomic features, given a corresponding microarray designed to map 

chromosomal loci. We also have future plans for improved scoring schemes and more advanced 

methods for combining the data from replicate experiments.  

 

5. Availability 

 

ExpressYourself is freely accessible for use at http://bioinfo.mbb.yale.edu/expressyourself. The 

program is written in C and Perl and may be installed on any web server for local use. Enquiries 

can be made to nicholas.luscombe@yale.edu. 

 

ExpressYourself currently accepts input files in GenePix Pro, Scanalyze, QuantArray or UCSF 

SPOT format. The processing steps to be applied to the data may be changed by altering the 

parameters at the input stage. The program and its outputs are accessible using any modern web 

browser, and text-based results can be downloaded for further analysis.  
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Figure Legends 
 

Figure 1: (a) Flow chart of data processing. Schematic images of a microarray slide depicting 

different stages of data processing: (b) filtering flawed array regions, (c) the effects of 

background correction, and (e) outcome of normalization.   

 

Figure 2: Screenshot of: (a) the main, and (b) scoring pages of ExpressYourself. 


