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Whole-genome expression profiles provide a rich new data-
trove for bioinformatics. Initial analyses of the profiles have
included clustering and cross-referencing to ‘external’
information on protein structure and function. Expression
profile clusters do relate to protein function, but the correlation
is not perfect, with the discrepancies partially resulting from
the difficulty in consistently defining function. Other attributes
of proteins can also be related to expression — in particular,
structure and localization — and sometimes show a clearer
relationship than function.
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Abbreviations
[Au: Please check the abbreviations carefully.]
EST expressed sequence tag
PCA principal component analysis
PCR polymerase chain reaction
SAGE serial analysis of gene expression
SOM self-organizing map
SVM support vector machine

Introduction
Bioinformatics has traditionally involved the computation-
al analysis of large molecular biology datasets. Initially,
these were drawn from the world of protein structure. In
1995, the field changed with the advent of complete
genome sequences, which represented a new type of large-
scale data. Now, whole-genome expression experiments
are providing further sources of large-scale data and trans-
forming bioinformatics yet again. Expression experiments
can generate a quantity of information that potentially
dwarfs that provided by [[AAuu::  OOKK??]] genome sequences and
protein structures. Whereas it is sufficient, for many prac-
tical purposes, to view genome sequencing as a one-time
process for each organism (except for the analysis of indi-
vidual genetic variations), expression experiments can be
repeated an arbitrary number of times to monitor the
expression of different cell types and states (diseased or
healthy), or the same cells at different times or in different
individuals. The number of potential experiments is only
limited by cost and imagination. Each of these experi-
ments potentially gives rise to a new genome-scale dataset
and a further challenge for bioinformaticians.

Expression data
Technologies and systems: SAGE, chips and arrays in
yeast and beyond
Genome-wide expression information is principally gener-
ated by three technologies: cDNA microarrays [1],
GeneChips (also called high-density oligonucleotide
arrays) [2] and SAGE (serial analysis of gene expression)
[3]. These technologies, which are all new and rapidly
evolving, have been recently reviewed [4–6]. The large
number of ESTs (expressed sequence tags) [[AAuu::  OOKK??]] in
different cells and tissues provides a further source of
large-scale expression information [7].

Expression monitoring on a genome-wide scale was first
successfully demonstrated in yeast [8–10]. Later experi-
ments have been performed on other organisms, including
mycobacteria [11], Escherichia coli [12], worm (see
http: / /bio info .mbb.yale .edu/genome/express ion
[[AAuu:: OOKK??]]), fly [13], mouse [14] and human [15,16]. There
are a number of technical difficulties associated with cer-
tain systems (e.g. the lack of poly-A tails in bacteria) but,
in principle, these experiments can be applied repeatedly
in a wide variety of organisms.

Relevant for computations: absolute versus relative,
population averages and [Au: OK?] databases
From a computational perspective, the three expression
technologies all produce a profile (or vector) of expression
levels for many genes. In principle, GeneChips and SAGE
allow the measurement of absolute expression levels (in
units of mRNA transcripts per cell), whereas cDNA
microarrays primarily measure changes relative to a refer-
ence state (yielding an ‘expression ratio’). Although
valuable, absolute transcript abundance measurements do
not completely measure mRNA concentration, which also
depends on cellular compartment volume.

Expression experiments measure cell population averages,
not individual cells, so another important issue is the
degree to which all cells in the investigated population are
in the same ‘state’. For single-cell organisms, temporal
synchronization can often be achieved artificially, for
example, [[AAuu::  OOKK??]] in yeast cell-cycle experiments,
cyclins were used for synchronization [10,17]. Work in
multicellular organisms has the added complexity that
expression measurements may combine many different
tissues. Recent papers have discussed statistical aspects of
expression data in detail [18,19•].

The first major bioinformatics task related to expression
data is organization and storage. This is currently the sub-
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ject of much discussion and there are a number of pilot
databases: GEO (the NCBI Gene Expression Omnibus);
ExpressDB [20] (Harvard); GeneX (NCGR); the Stanford
Microarray Database; and ArrayExpress [21] (see
http://bioinfo.mbb.yale.edu/genome/expression [[AAuu::  DDooeess
tthhiiss  lliinnkk  rreeffeerr  ttoo  aallll  tthhee  ddaattaabbaasseess  oorr  jjuusstt  AArrrraayyEExxpprreessss??]]).
Some issues being considered include [[AAuu::  OOKK??]]  whether
to normalize and standardize the data, whether it should
be stored in a central archive or federation of web sites and
to what degree details about experimental design should
be kept. Storing the raw array intensities lends itself nice-

ly to standard relational tables. However, information relat-
ed to the experimental conditions (tissues, drug
treatments, etc.) is more complicated. To some degree,
how to best archive the data will be determined by the
most popular analyses that bioinformaticians end up per-
forming.

Computational issues: internal versus external,
supervised versus unsupervised
Analysis of expression datasets [[AAuu::  OOKK??]]  encourages more
exploratory, data-driven styles of research than traditional
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hypothesis-driven approaches. Expression data analysis
can be loosely divided into two parts. In a first internal
[[AAuu:: HHoouussee--ssttyyllee  ddiiccttaatteess  tthhaatt  iittaalliiccss  ccaann  oonnllyy  bbee  uusseedd  ffoorr
ssppeecciieess  nnaammeess  aanndd  LLaattiinn  tteerrmmss,,  wwoouulldd  yyoouu  lliikkee  ttoo  uussee
iinnvveerrtteedd  ccoommmmaass  iinnsstteeaadd??]] part, one analyzes the numeri-
cal structure of the data (e.g. by clustering) without
explicitly relating expression levels to other biological
information concerning protein function, structure, regula-
tion and so on. In contrast, a second external [[AAuu::  SSeeee
aabboovvee]] part is primarily concerned with relating expression
measurements to these ‘external’ information sources. The
internal-external division is related to, but not the same as,
[[AAuu::  OOKK??]] the supervised-unsupervised distinction, often
used in machine learning [22••]. In supervised learning, an
algorithm tries to find patterns in the data, given explicit
sets of training and test examples preclassified on the basis
of external data. Such ‘tagged’ data is not present in the
unsupervised case. However, it is possible to subsequent-
ly relate patterns found in unsupervised learning to
external data or to do unsupervised learning on a dataset
consisting of expression profiles plus additional features. 

Clustering: bottom-up hierarchies versus top-
down partitions
The main type of internal analyses involves clustering and
partitioning the data. As schematized in Figure 1, the start-
ing point for clustering methods is defining a similarity
measure among expression profiles and then constructing
a matrix giving a distance between each pair of profiles. In
general, there are many possible metrics [23••,24•]. A com-
mon one is the Pearson correlation coefficient [22••,25•];

[[AAuu::  OOKK??]] an interesting modification of this is the ‘jack-
knife correlation’, which is robust with respect to data
outliers [26].

Hierarchical methods group profiles in a ‘bottom-up’ fash-
ion, joining the most similar profiles into clusters first and
then including more diverse ones [27]. There are a variety
of specific approaches (e.g. UPGMA [[AAuu;;  WWoouulldd  iitt  bbee
hheellppffuull  ttoo  bbrriieeffllyy  eexxppllaaiinn  wwhhaatt  tthhiiss  iiss??]], single-linkage,
multiple-linkage, etc.), which were mostly derived from
phylogenetic tree construction [28]. These were the first
methods applied to expression data [22••,25•,29•] and they
have the advantage that the number of clusters needs not
be specified beforehand. However, their drawback is that
there is no reason to believe that expression data — in con-
trast to evolutionary information — is naturally organized
in bifurcating trees. The trees produced by hierarchical
clustering can only be broken into clusters in some ad hoc
fashion. Furthermore, decisions made early in bottom-up
clustering cannot be undone and sometimes adversely
affect the final result.

In contrast to bottom-up clustering, partitioning approach-
es are ‘top down’. Important examples applied to
expression analysis are k-means [30••] and self-organizing
maps (SOMs) [31••,32•]. A tree structure is not assumed in
these methods; however, they often require an a priori
decision on the number and structure of distinct clusters.
It remains a problem to objectively determine the opti-
mum number of clusters for these algorithms [19•].
Recently, partitioning algorithms have been developed in
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Figure 1 legend

An overview of some principles of expression data analysis. The top
part of the figure shows a representation of the input data. Expression
data consist of expression level measurements for various genes
arranged in ‘profiles’ across either different conditions or different
times. One can determine the distance between each pair of profiles
and put this into a large ‘distance matrix’, which then forms the basis
for many of the clustering algorithms. (This is also known as a
‘correlation matrix’ or ‘kernel matrix’ in various calculations.) The top
part also gives a schematization of the types of external information
expression profiles can be related to. It shows part of a genome with
the relationship between transcribed gene sequences and protein
structure and function. Note how a number of genes can share the
same protein fold, how certain protein folds can have many functions
and how two different folds can have the same function. The bottom
part of the figure illustrates a number of ways of analyzing expression
data. Broadly, these can be divided into calculations dealing purely
with the internal structure of the profiles and calculations relating the
profiles to external, nonexpression information. Specific examples of
various methods for analyzing the correlation matrix of expression
profiles are PCA [34•], k-means clustering [30••] and SOMs [31••],
hierarchical clustering [22••,25•] and SVMs [24•]. PCA tries to find the
directions of greatest variance implied by the correlation matrix and to
then ‘visualize’ the data in terms of their projection on these directions.
Hierarchical clustering successively groups together the profiles that
are the most similar, generating a tree-like description of the data.
There are a variety of ways of making this determination of similarity; for

example, in UPGMA, it is based on the distance to an existing
averaged group center, whereas in single-linkage, it is based only on
the distance to the nearest representative of a given cluster. K-means
clustering algorithms make few assumptions about the data. They start
with a number (k) of randomly positioned cluster centers and then
update their positions to fit the data. SOMs are similar, but they
impose a bit more structure on the clustering, requiring that the
updated position of a cluster center be affected by the position of the
other cluster centers. (In relation to the subschematic illustrating
SOMs, adapted from [31••], note that SOMs would have constraints
related to the dotted lines, whereas in k-means these would be
absent). SVMs assume that the profiles are ‘tagged’ with already
known classification information, such as a functional class. They then
implicitly transform the data into a higher dimensional representation in
which a simple plane can be found to separate the differently tagged
groups. (In practice, this is accomplished by considering nonlinear
measures for distance, beyond simple correlation.) SVMs are
considered a type of supervised learning, in that they explicitly train
and test against the external data. In contrast, SOMs, k-means and
hierarchical clustering are considered unsupervised clustering, in that
they do not relate the learned clusters to the external data until after
they have been derived. However, one could imagine various
unsupervised algorithms that simultaneously consider expression data
and additional features derived from external information (such as
localization) in learning clusters.



which the number of clusters is determined by the algo-
rithm itself [33•].

An additional method of internal analysis is principal com-
ponent analysis (PCA) [34•]. This method can be
understood [[AAuu::  WWoouulldd  ‘‘uusseedd’’  ppeerrhhaappss  bbee  bbeetttteerr  hheerree??]] as
a way of compressing the data and filtering out noise by
projection onto a low-dimensional subspace. It can be used
for data visualization and initial exploration of clusters.

Phenotype characterization: cancer diagnosis
Another type of internal analysis uses [[AAuu::  OOKK??]] expres-
sion patterns to distinguish between cell types and disease
states. In this context, entire expression profiles can be
used to compare different experiments [[AAuu::  UUssee  iinnvveerrtteedd
ccoommmmaass??]] (in contrast to clustering genes). There have
already been many applications in cancer diagnosis
[35••,36,37•]; however, a full discussion is beyond the
scope of this review.

Relating expression profiles to protein function
Thus far, we have only discussed computations aimed at
revealing the internal structure of [[AAuu::  OOKK??]] expression
data. Expert biological knowledge is applied afterwards to
interpret the results. The next type of analysis tries to
explicitly integrate information about protein function,
structure and so forth directly into the expression data
computations. First, we will look at work relating expres-
sion profiles to protein function. As a prelude, it is
worthwhile to briefly discuss how protein functions are
classified. 

Functional classification and its problems
There are a number of schemes for classifying protein
function, which have been recently reviewed [38]. Briefly,
most of the schemes concentrate on a single organism, for
example, MIPS for yeast, GenProtEC for E. coli, FlyBase

for Drosophila and EGAD for human ESTs [39,40] (see
http://bioinfo.mbb.yale.edu/genome/expression). Other
schemes classify a subset of functions across a variety of
organisms, for example, ENZYME for enzyme function
and EcoCyc, WIT and KEGG for pathways [41–44]. There
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Figure 2 legend

[Au: Please check the equations carefully. They are notoriously
difficult to typeset and mistakes can inadvertently be introduced.]
Sample distributions of the average correlation coefficient for groups
of genes for expression data from the diauxic shift experiment. Most
clustering algorithms are based on computing distances between the
expression profiles of genes; in many cases, the Pearson correlation
coefficient is used as a distance metric (see, for instance, [22••]). For
two normalized expression ratio profiles Xi and Xj (each with average 0
and standard deviation 1), the Pearson correlation coefficient Rij is
given by the dot product:

where N is the number of elements in the profiles Xi and Xj. The
normalized profile X can be computed as a ‘Z-score’ from the
measured expression ratio profile x through the relation

where xavg denotes the average and σx the standard deviation of
values in x, and X(k) and x(k) are the kth components of their
respective profiles. Given a group of G genes, we can compute the
correlation coefficient matrix R, where each element (Rij) of the matrix
denotes the Pearson correlation coefficient between genes i and j. We
can then compute an average correlation coefficient (Ravg) by
averaging the matrix elements (excluding the main diagonal). This
statistic gives an idea of the overall similarity of the expression profiles
in a group of genes. Although there are O(G2) elements in R, the
computation time for Ravg can be kept proportional to O(G) by
calculating Ravg as follows:

where

is the sum of all expression profiles in the group of G genes. The
figure shows the distribution of this statistic for the expression data
measured during the diauxic shift in yeast [9]. Groups of genes of size
G were randomly chosen from the genome. For G = 2, the statistic is
simply the Pearson correlation coefficient itself. For increasing G, the
distributions become narrower. The distributions were generated by
sampling Ravg 10,000 times from the full distance matrix relating the
expression profiles of all approximately 6000 genes in yeast. Functions
of the form

can be fit to the cumulative distributions, where

is a transformation of the average correlation coefficient Ravg, with
a6 = b6 = 1, a0 = a1 = 0. For the graph shown in the figure (G = 2), we
used parameters a2 = 19.92, a3 = 5.66, a4 = –3.22, a5 = –1.02,
b0 = 2.07, b1 = 28.97, b2 = 3.47, b3 = 4.56, b4 = –1.56, b5 = –1.21.
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have been [[AAuu::  OOKK??]] some attempts to merge functional
classifications for different organisms into one common
source (the Gene Ontology Project [45], see http://bioin-
fo.mbb.yale.edu/genome/expression), although the
creation of a complete universal functional system will be
a difficult task [38,46]. However, there have been some
attempts in terms of creating unique keyword combina-
tions or sequence variability signatures for
functions [47,48].

Beyond the lack of scope of the current classification
schemes, it is important to realize that there are many pro-
found difficulties in functional classification. First, the
concept of ‘function’ is itself rather vague. Sometimes it is
defined in terms of biochemical mechanism (e.g. ‘adeny-
late kinase’); at other times, in terms of either [[AAuu::  OOKK??]]
involvement in pathways or overall cellular role(e.g. part of
‘glycolysis’ or ‘cellular metabolism’); and, finally, some-
times in terms of the phenotype of the organism when the
associated gene is disabled (e.g. ‘causes cancer’). [[AAuu::  II
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hhaavvee  bbrraacckkeetteedd  tthhee  eexxaammpplleess  iinn  oorrddeerr  ttoo  mmaakkee  aa  lloonngg  sseenn--
tteennccee  mmoorree  ddiiggeessttiibbllee..  PPlleeaassee  lleett  mmee  kknnooww  iiff  yyoouu  tthhiinnkk  tthhaatt
II  hhaavvee  ffaaiilleedd!!]] Second, many proteins are multifunctional,
having more than one function, sometimes in unrelated
areas [49]. For instance, the protease thrombin is primarily
associated with blood clotting, but also interacts with
receptors for cell activation and neural development [50].
Third, conversely, multiple gene products often collective-
ly carry out a single function (e.g. the ribosome). Fourth,
the naming of functions is currently unsystematic and
inappropriate for quantitative comparisons. Humorous
examples of this come from the fly, for which [[AAuu::  OOKK??]]
genes have most bizarre names, for example, ‘suppressor-
of-white-apricot’ and ‘darkener-of-apricot’, which are,
respectively, an RNA-binding protein and a kinase
involved in eye-color determination (SUWA_DROME and
DOA_DROME [[AAuu::  PPlleeaassee  eexxppllaaiinn  wwhhaatt  tthheessee  tteerrmmss
rreellaattee  ttoo..]]). There have been some attempts in terms of
creating unique keyword combinations or objective
sequence variability signatures for functions [47,51,52].

Supervised learning (support vector machines)
Given a function classification, one would like to know
how well clusters of expression profiles relate to function-
al categories and, if there is a relation, the degree to which
it can be used to predict the functions of genes. Some ini-
tial reports on expression analysis suggested that certain

prominent expression clusters did relate to functional cat-
egories and that function prediction was possible
[22••,53,54]. More recent work has tried to systematically
test this proposition using explicit training and testing sets.
As diagramed in Figure 1, one technique that has been
applied is support vector machines (SVMs) [24•]. This
supervised learning technique positions a hyperplane to
partition the data and minimize the number of misclassi-
fied proteins on the basis of a known functional
classification or empirical measurements not included in
the dataset.

Other supervised learning approaches include decision
trees, Parzen windows and Fisher’s linear discriminant
[24•]. More general approaches that make use of prior
information include Bayesian networks [55].

Global characterization of the expression/function
relationship
The calculations relating expression and function have
largely focused on specific cases or functional categories.
Figures 2 and 3 attempt to give an overview of how they
relate in a ‘global’ sense. On the basis of [[AAuu::  OOKK??]] the
results of a whole-genome expression experiment, one can
determine the distribution of similarity values for each pair
of genes, that is, the distribution of the [[AAuu::  OOKK??]] correla-
tions of their expression profiles. For groupings larger than
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Figure 3 legend

The degree of expression profile similarity is different for genes from
different functional groups and also varies between different
expression experiments. We illustrate this concept in the context of the
MIPS functional classification scheme. Each part shows [Au: OK?] the
negative logarithm of the one-sided P-values [–log(P)] based on
distributions of the average correlation coefficient for different
experiments, as explained in the legend to Figure 2. The P-values give
the probability that an average correlation greater than that observed
for each functional group could have arisen from a randomly selected
group of genes of the same size. Accordingly, lower P-values or higher
values of –log(P) indicate a greater significance of the similarity
between expression profiles. The P-values range from 0 to 1;
correspondingly, –log(P) ranges from infinity to 0. For values of –log(P)
greater than four, we cannot determine the value with certainty
because of the limited scale of our computation; we indicate this in the
table by ‘>4’ (for highly significant groupings). [Au: What does the
shading in the table represent? The degree of significance of the
grouping. Please explain.] Each row in parts (a) and (b) of the
figure corresponds to an MIPS functional category and each column
corresponds to a different expression experiment on yeast. The first
experiment is a GeneChip experiment [17] to monitor the cell cycle
synchronized by the cyclin CDC28. The other experiments are
microarray experiments: the cell cycle synchronized by CDC15 [10],
the diauxic shift [9] and the process of sporulation [8]. Part (a) shows
the most general MIPS categories, whereas (b) shows the
subcategories of the top-level MIPS category ‘energy’. Part (c)
summarizes the fraction of functional categories that represent
‘significant’ groupings with respect to expression. We define a
grouping as significant if we find values of –log(P) > 3, a less than 1 in
1000 chance that the observed average correlation arises randomly.
The first column indicates the level in the MIPS hierarchy. (MIPS 1 is
the first level, MIPS 2 is the second level, etc.) The next columns show

the fraction of significant groups for each experiment and the last
column shows the total number of groups in each MIPS level. The
fraction of significant groups decreases as the detail of classification
increases from the first to the third MIPS level. This is because (for the
quantitative assessment presented here) a high significance for a more
specialized MIPS category tends to also show up in a high
significance for the more general MIPS category one level above. In
part (c), we show the significance of the clustering determined by
various methods described in the text — in particular, hierarchical
clustering [21], k-means [30••] and SOMs [2]. The hierarchical
clustering was applied to all four experiments and to additional data on
the mitotic cell cycle, and temperature and reducing shocks (see
http://bioinfo.mbb.yale.edu/genome/expression). To apply the
methodology, the hierarchical tree was cut off such that 25 ‘subtrees’
or gene clusters remained. Clearly, both these methods produce much
more statistically significant clustering with respect to expression than
the MIPS functional groups. The only functional categories for which
we find high significance in all four experiments are at the top of the
table: ‘cell growth, division and DNA synthesis’ and ‘protein synthesis’
(including ribosomal proteins). In contrast, some categories are not
significant in any of the experiments (such as ‘beta-oxidation of fatty
acids’, another subcategory of ‘energy’). In general, there seems to be
a higher degree of correlation for the two cell-cycle experiments than
for the other two experiments (e.g. for the ‘metabolism’ category),
perhaps because the mechanics of the cell cycle forces a high degree
of transcriptional coexpression on many functional systems. However,
a few functional groups show a higher significance in the diauxic shift
and sporulation experiments (such as the group ‘glyoxylate cycle’,
which is a subcategory of ‘energy’). It can be clearly seen that many
functional groups show different degrees of coexpression under
different experimental conditions, highlighting the importance of
experimental design.



pairs (e.g. triplets), this can be generalized to the distribu-
tion of the average value of the correlation. Sample
distributions based on the yeast [[AAuu::  OOKK??]] diauxic shift
timecourse [9] are shown in Figure 2. And, as shown in
Figure 3, with respect to any particular expression experi-
ment, distributions can be used to evaluate the statistical
significance of a given clustering of genes. Most of the
clusters automatically generated using the algorithms dis-
cussed earlier (e.g. hierarchical clusters or SOMs) appear to

be significant. For instance, on the basis of a P < .001
threshold, 28 of the 30 SOM clusters for the cell-cycle data
are significant (93%). However, fewer gene groupings
based on the functional categories in MIPS are significant,
for example, only 10 of the 16 top-level MIPS clusters have
P < .001 (63%) for the same experiment. Some functional
groups are always highly correlated with expression pro-
files (e.g. ‘cell growth’ and ‘protein synthesis’). However,
other MIPS groups are only correlated in certain experi-
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Figure 4
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ments, for example, the ‘metabolism’ category and the
‘glycolysis’ subcategory are only correlated with expression
in the cell-cycle experiments. 

The lack of correlation between expression profiles and
functional categories can be explained, to some degree, in
terms of the different conditions of each experiment.
However, it also reflects the problematic aspects of func-
tional classification described earlier. Many of the MIPS
classes comprise genes that one would not expect to be
correlated, for example, ‘regulation of phosphate utiliza-
tion’ (P = .23), and it will be difficult to standardize the
functional categories enough that these inconsistencies
disappear.

Relating expression data to protein structure
Although function is, in a sense, the most obvious aspect of
proteins to relate to expression, many other attributes of
proteins can be cross-referenced against expression
data (e.g. their structure, localization, regulation, interac-
tions and so forth). It is particularly worthwhile to relate
protein structure to expression profiles for two reasons. 

First, many of the classification ambiguities with respect to
[[AAuu::  OOKK??]] function are not present with respect to
[[AAuu:: OOKK??]] structure, so the foundation of the analysis is
more precise. In particular, there are a number of ‘univer-
sal’ (across-organism) schemes classifying all known
structures into approximately 500 folds (e.g. SCOP, CATH,
FSSP and VAST [56–58]). These schemes, which have
been reviewed elsewhere [59], principally differ in the
degree to which they are based on automatic or manual
curation, and are considerably more systematic and objec-
tive than any of the functional classification schemes.

Furthermore, their annotation can be ‘transferred’ to
genomes as a function of sequence similarity, which is
[[AAuu:: OOKK??]] based on well-established quantitative relation-
ships [46,60,61]. Finally, recent surveys of the relationship
between fold and function indicate that most folds have
only a single biochemical function, whereas a few generic
scaffolds, such as the TIM barrel or α/β hydrolase, can
accommodate many functions (>10) [62,63]. Thus, much
of the lumping together of disparate genes into a single
erroneous ‘category’ can be avoided if one first [[AAuu::  OOKK??]]
classifies sequences based on single-function folds, rather
than jumping directly to function.

Building on the classification of structures, it is possible to
determine whether there are shared structural characteris-
tics of highly expressed proteins. Recent surveys [64•,65•]
have shown that highly expressed [[AAuu::  OOKK??]] proteins in
yeast are of mixed helix-sheet architecture, enriched in
alanine, relatively short and involved in metabolic and syn-
thetic functions. In contrast, folds of membrane proteins or
of proteins [[AAuu::  OOKK??]] with all-helical or all-sheet architec-
ture are expressed at considerably lower levels. Figure 4
highlights these results, showing particular folds that are
highly expressed and also folds that change in expression
considerably over a timecourse. Note that these two
groups are essentially disjoint; there being no folds that are
both highly expressed and highly variable in expression
over a timecourse. In particular, the most highly expressed
fold in yeast, the TIM barrel, is not the same as the most
commonly duplicated fold in the genome nor is it the same
as the folds that vary most in expression in the various
experiments.
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Figure 4 legend

This figure shows how expression data can be related to protein
structure. It shows a number of protein folds in the yeast, E. coli and
C. elegans genomes ranked by various measures related to expression
[Au: Again, what does the different shading of the rankings
show?]. At least the four most common folds for each type of ranking
are shown. The first column shows the rank of the fold in terms of how
many times it is found in the yeast genome (i.e. by duplication), based
on recent PSI-BLAST structural assignments [63]. The next column
shows its ranking in the transcriptome [64•], that is, the occurrence of
each fold weighted by the number of copies of mRNA associated with
it, based on GeneChip data [75]. Folds can be also ranked in terms of
their fluctuation in mRNA levels over an experiment, rather than their
total number of mRNA copies, using the average standard deviation of
the expression ratios as an indication of the degree of fluctuation. Such
rankings are shown in the next four columns. Columns 3 and 4 show a
ranking based on the fluctuation in expression in the yeast cell cycle
(CDC28 [17] and CDC15 [10]). Columns 5 and 6 show rankings
based on other yeast experiments, the diauxic shift [9] and sporulation
[8]. For comparison, columns 7 and 8 show the ranking for other
organisms, E. coli (based on fluctuation in the heat shock experiment
[12]) and C. elegans (based on the fluctuations during successive
larval stages of the worm; V Reinke, personal communication). [Au:
Does column 8 not give the PDB codes of the proteins, rather than
the C. elegans ranking? Have I got the correct figure? Please can

you check and adjust the legend accordingly.] Note how different all
the rankings are. The most common folds in the transcriptome have a
mixed α/βstructural architecture and are mostly cytosolic enzymes. The
most abundant fold is the TIM barrel, which is also known to be the
most versatile fold, associated with 16 different enzymatic functions
[63]. In terms of the fluctuation rankings, one fold that changes
considerably in expression is that of ‘ATPase domain of HSP90/DNA
topoisomerase II’, which is highly ranked in both cell-cycle experiments
(CDC28 and CDC15) and the E. coli experiment. The folds are
selected from the current 520 folds and 771 superfamilies as of 1
November 1999 in SCOP 1.48 [56]. For the yeast fluctuation
rankings, we excluded genes with an absolute expression level lower
than 100 units of intensity, as given by the CDC28 GeneChip,
because the signal fluctuations of lowly expressed genes are most
likely due to measurement uncertainties. (The absolute expression level
is defined as the difference between the intensity of the
oligonucleotide-perfect match [PM] and the background intensity
measured by a single mismatch probe [MM].) For the E. coli
experiment, we simply ranked the expression ratio because no time
series measurements were taken. For the C. elegans fluctuation
ranking, we excluded signals with less than 250,000 units [Au: Again,
is there a C. elegans ranking in the figure?]. [Au: What is ‘dim dom’
with respect to amino acid dehydrogenase? What is TBP? What is
shown by the Rep. PDB column?]



Relating expression data to other external
information
Another attribute of a gene that can be related to its
expression profile is its regulation. This subject has been
reviewed in detail [66], so we will only touch upon it
briefly here. Almost by definition, genes that have similar
expression profiles probably share upstream regulatory
elements. This fact has been exploited to search for new
regulatory sequences [30••,67–69]. For genes that have
similar expression profiles but do not share an obvious reg-
ulatory element, one can use an unsupervised motif
learner, such as a Gibbs sampler [70], to discover new reg-
ulatory motifs in upstream sequences.

Other attributes of proteins that have been related to
expression include subcellular localization and
protein–protein interactions. As was the case with protein
structure, these attributes of proteins can be more precise-
ly systematized than function. For yeast, systematic
information on localization and interactions is tabulated in
the MIPS, YPD and SwissProt databases [40,71,72]. With
regard to localization, it has been found that cytosolic pro-
teins tend to be expressed at high levels, whereas proteins
destined for membranes and mitochondria are expressed at
lower levels [73•]. Proteins in the secretory pathway have
high fluctuations in expression level over timecourses.
Collectively, this information can, in fact, be combined to
help predict the localization of proteins for which there is
expression information available, but no known localiza-
tion [74].

Conclusions 
The advent of whole-genome expression experiments has
led to a new class of bioinformatics analyses. These fall
into two main groups: internal clustering and comparison
of expression data, and cross-referencing of expression
data to other information on protein structure and func-
tion. With respect to the experiments on yeast, clusters of
genes that have similar expression profiles often fall into
the same functional category. However, this is not always
true in a ‘global’ sense. The discrepancies reflect particu-
lar functional categories highlighted by certain
experiments. More importantly, they also result from the
difficulty in consistently defining function across a wide
variety of proteins. We believe this latter difficulty is quite
significant and probably the major current impediment to
interpreting expression data in terms of protein function.
We can side-step this to some degree by focusing on
attributes of proteins other than function, such as struc-
ture, regulation and localization. Many of these can be
defined in a much more consistent fashion than function
and, perhaps because of this, show a clearer relation to
gene expression.
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