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The functional significance of a gene, at its most basic 
level, is defined by its essentiality. In simple terms, an 
essential gene is one that, when knocked out, renders the 
cell unviable. Nevertheless, non-essential genes can be 
found to be synthetically lethal (i.e. cell death occurs 
when a pair of non-essential genes is deleted 
simultaneously). Because essentiality can be determined 
without knowing the function of a gene (e.g. random 
transposon mutagenesis [1,2] or gene-deletion [3]), it is a 
powerful descriptor and starting point for further 
analysis when no other information is available for a 
particular gene. 

However, the definition of essentiality is not novel; 
Thatcher et al. introduced the ‘marginal benefit’ 
hypothesis [4], which states that many non-essential 
genes make significant but small contributions to the 
fitness of the cell although the effects might not be 
sufficiently large to be detected by conventional methods. 
In this article, we define systematically ‘marginal 
essentiality’ (M) as a quantitative measure of the 
importance of a non-essential gene to a cell. Our measure 
incorporates the results from a diverse set of four large-
scale knockout experiments that examined different 
aspects of the impact of a protein on cell fitness. These 
four experiments measure the effect of a particular 
knockout on: (i) growth rate [5]; (ii) phenotype [2]; (iii) 
sporulation efficiency [6]; and (iv) sensitivity to small 
molecules [7]. These datasets are the only available large-
scale knockout analyses for yeast. (There are several 
other smaller datasets [8–12] that have data only on a 
small fraction of the genome and were therefore not 
suitable for our analysis.) 

Protein networks are characterized by four major 
topological characteristics: degree [number of links per 
node (K)], clustering coefficient (C), characteristic path 
length [average distance between nodes (L)] and 

diameter [maximum inter-node distance (D); Figure 1a] 
[13–16]. It has been shown that some protein networks 
follow power-law distributions [17,18] – that is they 
consist of many interconnecting nodes, a few of which 
have uncharacteristically high degrees (hubs). In 
addition, power-law distributions can be characterized as 
scale-free – that is the possibility for a node to have a 
certain number of links does not depend on the total 
number of nodes within the network (i.e. the scale of the 
network). Scale-free networks provide stability to the cell 
because many non-hub (i.e. leaf) genes can be disabled 
without greatly affecting the viability of the cell [18]. 

Recently, Jeong et al. focused on the relationship 
between hubs and essential genes and determined that 
hubs tend to be essential [19]. Fraser et al. also observed 
that the effect of an individual protein on cell fitness 
correlates with the number of its interaction partners 
[20]. In this article, we extended the previous work to 
marginal essentiality and performed a genome-wide 
analysis of essentiality within a wide variety of protein 
networks. Further information is available from 
http://bioinfo.mbb.yale.edu/network/essen. 
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We constructed a comprehensive and reliable yeast-
interaction network containing 23 294 unique 
interactions among 4743 proteins [16,21]. In a gross 
comparison we found that essential proteins, as a whole, 
have significantly more ‘links’ than the non-essential 
proteins, validating earlier findings [19]. Specifically, 
essential proteins have approximately twice as many 
links compared with non-essential proteins (Figure 1b). 
We can also see from the power-law plots of the 
interactions of essential and non-essential genes 
(Figure 1c) that the essential genes have a shallower 
slope, indicating that a proportionately larger fraction of 
them are hubs. 

Given that essential proteins, on average, tend to have 
more interactions than non-essential proteins, we 
determined the fraction of hubs that are essential. We 
define hubs as the top quartile of proteins with respect to 
the number of interactions (see supplementary material 
online); therefore, 1061 proteins are defined as hubs 
within the yeast network. We found ~43% of hubs in 
yeast are essential (Figure 3a); this is significantly higher 
than random expectation (20%). 

Furthermore, within the interaction network, essential 
proteins also tend to be more cliquish (as determined 
from the clustering coefficient) and tend to be more 
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closely connected to each other (as determined from the 
characteristic path length and diameter). Not 
surprisingly, the values of these topological statistics 
(except for the clustering coefficient) for synthetic lethal 
genes are between those of the essential and non-
essential genes (Figure 1b). 
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We expanded our analysis to non-essential genes, 
analyzing the relationship between marginal essentiality 
and topological characteristics. Overall, we found simple, 
monotonic trends for all four topological characteristics 
(Figure 2 and supplementary Figure 2 online). In 
particular, we found a positive correlation with marginal 
essentiality for descriptors of local interconnectivity (i.e. 
degree and clustering coefficient) but an inverse 
correlation for long-distance interactions (i.e. diameter 
and characteristic path length). Thus, the more 
marginally essential a gene is the more likely it is to have 
a large number of interaction partners – in agreement 
with the conclusion of Fraser et al. [20]. More 
importantly, the greater the marginal essentiality of a 
protein, the more likely it will be closely connected to 
other proteins – as reflected by a short characteristic 
path length. This implies that the effect of that protein on 
other proteins is more direct. 

Marginal essentially is correlated with a higher 
likelihood to be one of the 1061 protein hubs (Figure 2d). 
Because hubs in the protein-interaction networks have 
been shown to be important for cell fitness [19], this 
positive correlation further confirms the biological 
relevance of our marginal-essentiality definition. 
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Finally, we analyzed protein essentiality within many 
smaller directed networks of interacting proteins and 
regulatory networks (i.e. transcription factors and the 
target genes that they regulate) [22–26]. These networks 
differ from protein–protein interaction networks in that 
they are directed. We looked at regulatory networks from 
two separate perspectives: (i) the regulator population 
(e.g. out degree) – where we are examined a directed 
network of transcription factors acting on targets; and (ii) 
the target population (e.g. in degree) – where we 
analyzed the sets of target genes that are regulated by 
any given transcription factor. 

Analyzing the regulator population, we found that 
essential genes contribute to a larger percentage of the 
more promiscuous transcription factors (Figure 3b). In 
analyzing the target population, we found that the 
targets that are associated with the fewest transcription 
factors have a proportionally higher number of essential 
genes (Figure 3c). 

The results for the regulators and the targets, 
although seemingly contradictory, are logical. If a 
regulator is deleted, the expression of all its target genes 
will be more or less affected. Therefore, the more targets 
a regulator has, the more important it is. Our analysis of 
the regulator population has, logically, shown that the 
promiscuous regulators tend to be essential. 

We have found that most essential genes are ‘house-
keeping’ genes [i.e. their expression level is much higher 
and the fluctuation of their expression is much lower 
compared with non-essential genes (supplementary Table 
1 online)]. Therefore, the expression of essential genes 
tends to have less regulation, whereas non-essential 
genes often use more regulators to control the expression 
of gene products. This might be because essential 
proteins perform the most basic and important functions 
within the cell and, consequently, always need to be 
switched ‘on’. Their expression does not need to be 
regulated by many factors because this makes the 
essential gene dependent on the viability of more 
regulators, which makes the cell less stable. 

Relationship between essentiality and functionRelationship between essentiality and functionRelationship between essentiality and functionRelationship between essentiality and function    
Having concluded that the essentiality of a gene is 
directly related to its importance to the cell fitness in 
both interaction and regulatory networks, we examined 
the relationship between the number of functions of a 
gene and its tendency to be essential using the functional 
classification from the Munich information center for 
protein sequence (MIPS) [27]. Figure 3d shows that genes 
with more functions are more likely to be essential. More 
importantly, the likelihood of a gene being essential has a 
monotonic relationship with the number of its functions. 

ConclusionConclusionConclusionConclusion    
In this article, we have provided a comprehensive 
definition of ‘marginal essentiality’ and analyzed the 
tendency of the more marginally essential genes to 
behave as hubs. Surprisingly, we also found that hubs in 
the target subpopulations within the regulatory networks 
tend not to be essential genes. 
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Essential protein

Non-essential protein

Marginally essential
protein

(a) Schematic illustration of the network

(b) Comparison of key topological statistics

Essential 18.7 0.182 3.84 10
Synthetic lethal 9.2 0.083 4.24 10
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FigureFigureFigureFigure    1.1.1.1. (a)(a)(a)(a) Schematic illustration of the diameter of a sub-network. In an undirected network, the diameter of the essential protein network (shown by the red 
line) is the maximum distance between any two essential proteins. The path can go through non-essential proteins but has to start and end at essential proteins; 
the same conditions apply to the non-essential protein network. Non-essential genes represent those that have no detected effects on cell fitness. The traditional 
concept of ‘non-essential genes’ includes both non-essential and marginally essential genes. (b)(b)(b)(b) A comparison of key topological characteristics. The values of 
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different characteristics for essential, synthetic lethal and non-essential proteins are given in the table together with the P-values, which measure the statistical 
significance of the difference between the values for essential and non-essential proteins. The values are calculated as described in the supplementary materials 
online. P-values are calculated using non-parametric Mann-Whitney U-tests. (c)(c)(c)(c) A comparison of power-law distributions. The plot is on a log---log scale. The 
regression equations (y) and correlation coefficients (R) are given close to the corresponding lines in the figure.  
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FigureFigureFigureFigure    2.2.2.2. Monotonic relationships between topological parameters and marginal essentiality for non-essential genes. (a)(a)(a)(a) A positive correlation exists between the 
average degree (K) and marginal essentiality (M). (b)(b)(b)(b) A positive correlation exists between the clustering coefficient (C) and marginal essentiality. (c(c(c(c)))) A negative 
correlation exists between the characteristic path length (D) and marginal essentiality. (d)(d)(d)(d) A positive correlation exists between hub percentage and marginal 
essentiality. The marginal essentiality for each non-essential gene is calculated by averaging the data from four datasets: (i) growth rate [5]; (ii) phenotype [2]; (iii) 
sporulation efficiency [6]; and (iv) small-molecule sensitivity [7]. Because the raw data in different datasets are on different scales, all the data points are 
normalized through dividing by the largest value in each dataset. In particular, the marginal essentiality (Mi) for gene i is calculated by: 
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where Fi,j is the value for gene i in dataset j. Fmax,j is the maximum value in dataset j. Ji is the number of datasets that have information on gene i in the four 
datasets. All the data included in the calculations are the raw data from the original datasets, except the growth rate data, which were baseline corrected. Before 
calculating the marginal essentiality, we verified that the four datasets were mutually independent. Although other methods could also be used to define 
marginal essentiality, we determined that different definitions have little effect (supplementary material online). Genes are grouped into five bins based on their 
marginal essentialities: bin one, <0.05; bin two (0.05, 0.1); bin three (0.1, 0.2); bin four (0.2, 0.3); bin five, ≥0.3. The y-axis represents the topological characteristics 
among the genes within the same bin. P-values show the statistical significance of the difference between the first and the last bars on each graph. The values of 
the topological characteristics, the marginal essentialities and the P-values are calculated as described in supplementary material online. 
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FigureFigureFigureFigure    3.3.3.3. The observed likelihood for different classes of genes being essential. (a)(a)(a)(a) Protein hubs in the interaction network tend to be essential. Based on the 
degree distribution (Figure 1 in the supplementary online), 1061 proteins were considered as protein hubs, within which the percentage of essential proteins was 
examined. ‘Whole genome’ refers to the likelihood that all proteins in the whole genome that have at least one interaction partner to be essential. There are, in 
total, 4743 proteins with at least one interaction partner in the dataset, among which 977 (~20%) are known to be essential. (b)(b)(b)(b) Transcription factors (TFs) with 
many (>100) targets are more likely (P<10−7) to be essential than the other proteins. (c)(c)(c)(c) Genes with many regulating TFs (≥10) are less likely (P<10−12) to be 
essential than those with only a few TFs (2---9), whereas these genes are less likely (P<10−02) to be essential than those with only one TF. (d)(d)(d)(d) Genes with more 
functions are more likely to be essential. The P-value measures the difference between genes with only one function and those with more than four functions. 
The P-values in all panels are calculated by the cumulative binomial distribution. 

 

 


