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Abstract 
We introduce the notion of ‘marginal essentiality’ through quantitatively combining the 
results from large-scale phenotypic experiments. We find that this quantity relates to 
many of the topological characteristics of protein-protein interaction networks.  In 
particular, proteins with a greater degree of marginal essentiality tend to be network hubs 
(having many interactions) and to have a shorter characteristic path length to others. We 
extend our network analysis to encompass transcriptional regulatory networks. While 
transcription factors with many targets tend to be essential, surprisingly, we find that 
genes regulated by many transcription factors are usually not essential. Further 
information is available from http://bioinfo.mbb.yale.edu/network/essen. 
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Introduction 
The functional significance of a gene, at its most basic level, is defined by its essentiality. 
In simple terms, an essential gene is one that, when knocked out, renders the cell unviable. 
Nevertheless, non-essential genes can be found to be synthetically lethal; i.e., cell death 
occurs when a pair of non-essential genes is deleted simultaneously. Because essentiality 
can be determined without knowing the function of a gene (e.g., random transposon 
mutagenesis1,2, or gene-deletion3), it is a powerful descriptor and starting point for further 
analysis when no other information is available for a particular gene.  
 
While the definition of essentiality is not novel, Thatcher et al  introduced the “marginal 
benefit” hypothesis4. It states that many non-essential genes make significant, but small, 
contributions to the fitness of the cell, but the effects may not be large enough to be 
detected by conventional methods. Here, we systematically define “marginal essentiality” 
(M) as a quantitative measure of a non-essential gene’s importance to a cell (see figure 2 
caption). Our measure incorporates the results from a diverse set of four large-scale 
knock-out experiments examining different aspects of a protein’s impact on cell fitness. 
These four experiments measure the effect of a particular knock-out on: (i) growth rate5; 
(ii) phenotype2; (iii) sporulation efficiency6; and (iv) sensitivity to small molecules7. 
These datasets are the only available large-scale knock-out analyses for yeast. (There are 
a number of other smaller datasets8-12, which have data only on a small fraction of the 
genome and are therefore not suitable here.) 
 
Protein networks are characterized by four major topological characteristics: degree 
(number of links per node K), clustering coefficient (C), characteristic path length 
(average distance between nodes L), and diameter (maximum inter-node distance D, 
figure 1a)13-17. It has been shown that some protein networks follow power-law 
distributions18,19;  i.e., they consist of many interconnecting nodes, a few of which have 
uncharacteristically high degrees (hubs). Additionally, power-law distributions can also 
be characterized as scale-free; i.e., the possibility for a node to have a certain number of 
links does not depend on the total number of nodes within the network (i.e., the scale of 
the network). Scale-free networks provide stability to the cell, as many non-hub (i.e. leaf) 
genes can be disabled without greatly affecting the viability of the cell19.  
 
Recently, Jeong et al focused on the relationship between hubs and essential genes, 
determining that hubs tend to be essential20. Fraser et al also observed that an individual 
protein’s effect on cell fitness correlates with its number of interaction partners21. Here, 
we extend the previous work to marginal essentiality and perform a genome-wide 
analysis of essentiality within a wide variety of protein networks. 
  

Results 
Comparison between essential and non-essential proteins within interaction network 
We constructed a comprehensive and reliable yeast interaction network containing 
23,294 unique interactions among 4,743 proteins16,17,22. In a gross comparison we found 
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that essential proteins, as a whole, have significantly more "links" than non-essential 
ones, validating earlier findings20. Specifically, essential proteins have approximately 
twice as many links as compared to non-essential ones (figure 1b). We can also see from 
the power-law plots of the interactions of just essential and non-essential genes (fig. 1c): 
Essential genes have a shallower slope indicating that a proportionately larger fraction of 
them are hubs.   
 
Given that essential proteins, on average, tend to have more interactions than non-
essential ones, we determined the fraction of hubs that are essential. Here, we define hubs 
as the top quartile of proteins with respect to number of interactions17, giving 1061 
proteins as hubs within the yeast network. We found ~43% of hubs in yeast are essential 
(figure 3a), significantly higher than random expectation (20%).  
 
Furthermore, within the interaction network, essential proteins also tend to be more 
cliquish (as determined from the clustering coefficient) and more closely connected to 
each other (as determined from the characteristic path length and diameter). Not 
surprisingly, the values of these topological statistics (except the clustering coefficient) 
for synthetic lethal genes are between those for the essential and non-essential ones (see 
figure 1b). 

Topological characteristics for marginal essentiality within interaction network 
We expanded our analysis to non-essential genes, analyzing the relationship between 
marginal essentiality and topological characteristics. Overall, we found simple, 
monotonic trends for all four network statistics (figure 2 and supplementary figure 2). In 
particular, we found a positive correlation with marginal essentiality for descriptors of 
local interconnectivity (i.e., degree and clustering coefficient) but an inverse correlation 
for long distance interactions (i.e., diameter and characteristic path length). Thus the 
more marginally essential a gene is the more likely it is to have a large number of 
interaction partners -- in agreement with Fraser et al’s conclusion21. More importantly, 
the greater a protein's marginal essentiality, the more likely it will be closely connected to 
other proteins - as reflected by a short characteristic path length.  This implies that the 
effect of that protein on other proteins is more direct.  
 
Figure 2d shows that marginal essentially is correlated with a higher likelihood to be one 
of the 1061 hubs. Because hubs in the protein interaction networks have been shown to 
be important to cell fitness20, this positive correlation further confirms the biological 
relevance of our marginal-essentiality definition.  

Analysis of regulatory networks 
Finally, we analyzed protein essentiality within many smaller directed networks of 
interacting proteins, regulatory networks, i.e. transcription factors and the target genes 
they regulate23-27. These networks differ from protein-protein interaction networks in that 
they are directed. We looked at regulatory networks from two separate perspectives: the 
regulator population (e.g., out degree) -where we are looking at a directed network of 
transcription factors acting on targets, and the target population (e.g., in degree) - where 
we analyze the sets of target genes that are regulated by any given transcription factors. 
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Analyzing the regulator population, we found that essential genes make up a larger 
percentage of the more promiscuous transcription factors (figure 3b). In analyzing the 
target population, we found that the targets associated with the fewest transcription 
factors have a proportionally higher number of essential genes (figure 3c).  
 
The results for the regulators and the targets, though seemingly contradictory, are logical. 
If a regulator is deleted, the expression of all its target genes will be more or less affected. 
Therefore, the more targets a regulator has, the more important it would be. Our analysis 
of the regulator population has, logically, shown that the promiscuous regulators do tend 
to be essential.   
 
On the other hand, we have found that most essential genes are “house-keeping” genes, 
i.e., their expression level is much higher and the fluctuation of their expression is much 
lower compared with non-essential genes (supplementary table 1). Therefore, the 
expression of essential genes tends to have less regulation, whereas, non-essential genes 
often use more regulators to control when and how much the gene products should be 
expressed. Another possible reason is that essential proteins carry out the most basic and 
important functions within the cell. They, consequently, always need to be "on". And 
their expression does not need to be regulated by many factors since this makes the 
essential gene dependent on the viability of more regulators, which makes the cell less 
stable.  

Relationship between essentiality and function 
Having discussed thoroughly that the essentiality of a gene is directly related to its 
importance to the cell fitness in both interaction and regulatory networks, we now 
examine the relationship between the number of a gene’s functions and its tendency to be 
essential, using the MIPS functional classification28. Figure 3d shows that genes with 
more functions are more likely to be essential. More importantly, the likelihood of a gene 
being essential has a monotonic relationship with the number of its functions. 

Conclusion 
In this paper, we comprehensively defined "marginal essentiality" and analyzed the 
tendency of the more marginally essential genes to behave as hubs. Surprisingly, we also 
found that hubs in the target subpopulations within the regulatory networks tend not to be 
essential genes. 
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Figure Captions 
 
Figure 1. A. Schematic illustration of the diameter of a sub-network. In an undirected 
network, the diameter of the essential protein network (shown as the red line) is the 
maximum distance between any two essential proteins. The path can go through non-
essential proteins, but has to start and end at essential ones, which is the same for that of 
the non-essential protein network. In this panel, non-essential genes represent those that 
have no detected effects on cell fitness. The traditional concept of “non-essential genes” 
includes both non-essential and marginally essential genes in this panel. B. Comparison 
of key topological characteristics. The values of different characteristics for essential, 
synthetic lethal and non-essential proteins are given in the table, together with the P-
values, measuring the statistical significance of the difference between the values for 
essential and non-essential proteins. The values are calculated as described in 
supplementary materials. P-values are calculated using non-parametric Mann-Whitney U-
tests. C. Comparison of power-law distributions. The plot is on a log-log scale. The 
regression equations and correlation coefficients (R) are given close to the corresponding 
lines in the figure.  Open squares: non-essential genes, solid circles: essential genes. 
 
Figure 2. Monotonic relationships between topological parameters and marginal 
essentiality for non-essential genes. A. positive correlation between average degree and 
marginal essentiality. B. positive correlation between clustering coefficient and marginal 
essentiality. C. negative correlation between characteristic path length and marginal 
essentiality. D. positive correlation between hub percentage and marginal essentiality. 
The x-axis is the marginal essentiality (M). The marginal essentiality for each non-
essential gene is calculated by averaging the data from four datasets: (i) growth rate5; (ii) 
phenotype2; (iii) sporulation efficiency6; and (iv) small-molecule sensitivity7. Because the 
raw data in different datasets are on different scales, all the data points are normalized 
through dividing by the largest value in each dataset. In particular, the marginal 
essentiality (Mi) for gene i is calculated by: 
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where Fi,j is the value for gene i in dataset j. Fmax,j is the maximum value in dataset j. Ji is 
the number of datasets that have information on gene i in the four datasets. All the data 
included in the calculations are the raw data from the original datasets, except the growth 
rate data, which were baseline-corrected17. Before calculating the marginal essentiality, 
we verified that the four datasets were mutually independent. Although other methods 
could also be used to define marginal essentiality, we determined that different 
definitions have little effect17. Genes are grouped into 5 bins based on their marginal 
essentialities: bin1, <0.05; bin2 [0.05, 0.1); bin3 [0.1, 0.2); bin4 [0.2, 0.3); bin5, ≥0.3. 
The y-axis is the topological characteristics among the genes within the same bin. P-
values show the statistical significance of the difference between the first and the last bars 
on each graph. The values of the topological characteristics, the marginal essentialities 
and the P-values are calculated as described in supplementary materials.   
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Figure 3. Observed likelihood for different classes of genes being essential. A. Protein 
hubs in the interaction network tend to be essential. Based on the degree distribution (see 
supplementary figure 1), 1061 proteins are considered as protein hubs, within which the 
percentage of essential proteins is examined. “Whole genome”: likelihood of all proteins 
in the whole genome that have at least one interaction partner to be essential. There are, 
in total, 4,743 proteins with at least one interaction partner in the dataset, among which 
977 (~ 20%) are known to be essential. B. Transcription factors (TFs) with many (>100) 
targets are more likely (P < 10-7) to be essential than the rest. C. Genes with many 
regulating TFs (≥10) are less likely (P < 10-12) to be essential than those with only a few 
TFs (2-9), while these genes are less likely (P < 10-02) to be essential than those with only 
one TF. D. Genes with more functions are more likely to be essential. The P value 
measures the difference between genes with only one function and those with more than 
4 functions. The P values in all panels are all calculated by the cumulative binomial 
distribution. 
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