Response Letter

-- Editor-1 – Abstract too long --

Reviewer	The abstract is too long and should be ~100 words-so I
Comment	suggest you move the marked section until later.
Author	We changed the abstract according to the editor's comments on
Response	the marked manuscript.
Excerpt From	[Abstract]
Revised Manuscript	From merging a number of data sources, we created an extensive map of the transcriptional regulatory network in yeast, comprising 7419 interactions connecting 180 transcription factors (TFs) with their target genes. We integrated this network with gene-expression data, relating the expression profiles of TFs and target genes. We found that genes targeted by the same TF tend to be co-expressed, with the degree of co-expression increasing if genes share more than one TF. Moreover, shared targets of a TF tend to have similar cellular functions. In contrast, the expression relationships between the TFs and their targets are much more complicated, often exhibiting time-shifted or inverted behavior.

-- Editor-2 - Reference style --

Reviewer	The reference articles need titles
Comment	
Author	We changed the reference style accordingly.
Response	
Excerpt From	[Reference]
Revised Manuscript	 Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. [see comments.]. Science 270, 467-70
	2 Chee, M. et al. (1996) Accessing genetic information with high-density DNA arrays. <i>Science</i> 274, 610-4

-- Editor-3 – Other microarray datasets --

Reviewer Comment	Referee 1 makes the point you have only looked at the cell-cycle. Would it be an idea to extend the analysis to one other condition?
Author	1. The referee and the editor are right in that some transcription
Response	factors only activate (or repress) their targets in response to specific conditions (sporulation, heat-shock, etc). In this sense, we should extend the analysis to other conditions. However, we have shown that the regulators do not have significant enrichment of correlated relationships with their targets; instead they tend to have delayed relationships. In order to detect these more subtle temporal relationships, it requires that (1) the expression dataset should be a time- series dataset with a considerable number of time points; (2) the interval between time points should be uniform and relatively small for a good resolution. These are also the

Excerpt From Revised Manuscript	r l c a r t 2. V r c k f f c k f f f l 2. V v v v v v v v v v v v v v v v v v v v	Jnfortunate conditions and few t relationship hese datas We did ext nicroarray coefficient petween co ound that, general tree he cell cyc end to be when gene <u>We added</u> and the to be when gene <u>the expression</u> of the expression of the cell cycles and the to be	are no ime pos betw sets. V tend c data metho o-regul althou nd ren cle dat co-ey es are these lataset m profile pairs of g	o us ost of ot time ooints. ween t Ve add our an sets. od to d lated ta ugh the nains t taset, i co-reg new re	e th the m -serie: There the reg led thi alysis We u determ arget (e spec the sa i.e. (1) ed; (2) gulated e sults i	e loc nicroarr s datas efore, gulator s expla of co- used f ine the genes v ific LOI me as) co-ex d by m in the te mough two coal cluste	al clustering method. ray datasets under these sets or have big intervals we cannot analyze the s and their targets within ination in the text. regulated genes to other the Pearson correlation e correlated relationships within these datasets. We D values are different, the our previous results from heral, co-regulated genes kpression is much better hore than one regulators. ext.
	tempor time-sł	al relationships ifted. To find t	as diagr hese rela	amed in l tionships	Fig. 1b ¹² : , express	correlated	d, time-shifted, inverted, and inverted must be assessed over a time-course,
	with m these c	any measureme onditions, being	ents, at si g only su	nall and itable for	uniform i simple c	intervals.	Most available datasets do not satisfy calculations (<i>ie</i> co-expression); thus,
	we car results	are observed in	other mi	analysis	on the c datasets.	ell-cycle	dataset. Nevertheless, similar overall
	[Page : Similar	5] r results are obs	erved for	other ex	pression	datasets ^{3,11}	³⁻¹⁷ (Table 2).
	[Table	1]					
	Table	. Summary of t	ranscript	ion regul	atory net	work data	set.
		motifs'	SIM	MIM	FFL	ALL	
		# IFS # targets	119 1754	118 986	97 511	188 3416	
	rget s	Total	1754	2781	1523	7419	
	TF-ta pair	Activation [‡]	37	50	19 - 33 [§]	144	
	#	Repression [‡]	12	34	23 - 10 [§]	79	
	et c	Stress response Sporulation	0.44*	3.55* 0.25	0.59	0.88*	
	s for targ	Diauxic shift	0.11*	1.78*	0.30*	0.30*	
	alues ssed pairs	Cell Cycle	0.37*	4.87*	1.20"	2.14"	
	oD v:	(Spellman et al.)	0.37	2.09	1.02	0.52	
	θ	" " (Zhu et al)	0.22*	2.50*	0.91*	0.64*	
	* LOD * The	values with P-v	value sma	aller than	1e-05 (se	ee supplen	nentary Table 1)
	target	bairs. There are	3 smalle	r motifs:	Auto, 22	targets, N	ACL, 31 targets, RC, 119 targets. The
	randon	n expectation fo	or the num	mber of t	argets is	6130, the	number of yeast genes. The random
	expecta	ation for the nui nting all pairs b	nber of g etween v	gene pairs	in yeast	1s 187853	85 = 6130(6129)/2, which is obtained
	‡ Posi	tive expression	relation	ships (co	rrelated	and time-	shifted) are considered as activation
	signals	, while negative	relatio	onships (inverted	and inve	rted time-shifted) are considered as
	this is	distinct from the	eraii, 18 e number	of activa	s activate ator relati	e some of ons deterr	nined experimentally (as described in
	§2.4 ar	nd §3.2)					r

§ We show th £ Log odds r The local clu Pearson corr correlation co [Supplement Supplement	ne number atios for ta istering mo elation co pefficients ary Table ary Table	of relations rget gene pa ethod cannot efficient. Co 1] 1. P-values ³	for FFL:T irs having be applie o-expresse	F1 and FF correlated ed, so expr d gene pa COD value	EL: TF2. d profiles in dif ression correlat airs are those es in Table 1	ferent expres ion is measu in the top 1	sion datasets. red using the % of largest
Motif [†]	Stress response	Sporulation	Diauxic shift	DNA damage	Cell-cycle by Spellman et al	Cell-cycle by Cho et al	Cell-cycle by Zhu et al
SIM	2.50E-06	0.2958	4.88E-06	1.33E-11	2.28E-11	1.29E-11	2.28E-09
FFL	0.0097	0.2829	5.71E-07	5.81E-07	0	3.95E-13	0
MIM	0	0.1351	0	9.78E-13	3.73E-13	1.48E-12	3.22E-15
ALL	4.67E-11	0.9877	0	1.16E-10	5.96E-10	8.88E-10	0
Correlation coefficient Cut-off [‡]	0.70	0.95	0.90	0.80	0.70	0.70	0.70
* P-values an † The abbrev ‡ Correlation which rough coefficient of	e calculate iation for coefficie ly top 1%	ed by the for the motifs is ent cut-off is gene pairs	mula given the same a determine with the l	n in text. as in the caned as the largest constants	aption of Figure Pearson corr rrelation coeffi	e 1. elation coeff cient are. Th	icient, above ne correlation

-- Editor-4 – Measurement of expression correlation --

Reviewer	What is expression correlation exactly and how is it
Comment	measured? Is it the correlation over time drawn from
	expression of gene a vs gene b?
Author	1. Yes, expression correlation is the correlation over time drawn
Response	from expression of gene a vs gene b. We added the
	explanation in the caption of Figure 1.
	2. Please refer to response Editor-5.
Excerpt From	[Figure 1 caption]
Revised Manuscript	The local clustering method uses a dynamic programming algorithm to align the expression
	profiles of the genes in question. From the alignment, the method is able to determine which of
	the four types the relationship is and assign a clustering score measuring the significance of the
	relationship; for the Cho et al dataset, a score of 13 or above corresponds to a relationship
	significant to $p = 2.7 \times 10^{-3}$ (see supplementary materials).

-- Editor-5 – Explanation of expression relationships--

Reviewer	I think the time courses (which you label "Supplementary
Comment	material") need to be shown a new fig 1. (You will then
	need to re-label the figures). You need to make clearer
	whether all the panels show what you later call
	"correlation ", so do time shifted and inverted also fall
	into the class of "correlated"? Or are you just talking
	about "simultaneous" as correlated? We also need some
	details as to the statistical tests that are used to
	determine correlation (of the three types).
Author	1. We changed the old "supplementary material" to be the new
Response	Figure 1 as the editor suggested
	2. The "correlated" relationship is the "simultaneous"

	 relationship shown in Figure 1B.1. And, only the class of "correlated" is considered as "correlation" or "co-expression". In order to prevent the confusion, we removed the term "simultaneous relationship" and named Figure 1B.1 as "correlated relationship (i.e. co-expression)". We also labeled Figure 1B.1 as "correlated relationship as "co-expression)". Moreover, we modified the text to make it clear that we only consider "correlated" relationship as "co-expression". 3. In order to make it clearer what each relationship means biologically, we showed real expression profiles of transcription factors and their targets in three examples in Figure 3. Different expression relationships between these genes within each example are discussed in detail in the manuscript. 4. The local clustering method uses a dynamic programming clustering as the expression and the second seco
	algorithm to align the expression profiles of the genes in question. From the alignment, the method is able to determine which type (of the four types) the relationship is and assign a clustering score as a statistical measurement of the alignment. We added the calculation details of the local clustering method in the Figure 1 caption. We also adapted the description of the method from our previous JMB paper and added it in the "Supplementary materials". The reader should be able to repeat the calculations to determine the expression relationships after she/he reads the paper and the supplementary materials.
Excerpt From Revised Manuscript	 [Page 3] 1.2 Gene expression dataset We obtained expression profiles of yeast genes through two complete cell cycles.¹¹ Between the expression profiles of pairs of genes, we used a local clustering method to calculate four types of temporal relationships as diagramed in Fig. 1b¹²: correlated, time-shifted, inverted, and inverted time-shifted. To find these relationships, expression levels must be assessed over a time-course, with many measurements, at small and uniform intervals. Most available datasets do not satisfy these conditions, being only suitable for simple correlation calculations (<i>ie</i> co-expression); thus, we can only conduct detailed analysis on the cell-cycle dataset. Nevertheless, similar overall results are observed in other microarray datasets. [Figure 1 caption] Figure 1. Schematic representations of transcription regulatory motifs and temporal gene expression relationships. (A) Depiction of the six basic regulatory motifs: O TF, □ target. (1) single input motif - target gene has one TF, (2) multi-input motif - target gene has multiple TFs, (3) feed-forward loop - leading TF (TF1) regulates an intermediate TF (TF2) and both regulate the target gene. (4) autoregulation - TE targets itself. (5) multi-component loon - two TE targets.
	the target gene, (4) autoregulation – 1F targets itseli, (5) multi-component loop – two 1Fs regulate each other, and (6) regulator chain – set of TFs regulate each other in series. (B) Schematic of the four gene expression relationships: (1) correlated (<i>ie</i> co-expressed - genes have similar profiles), (2) time-shifted (genes have similar profiles, but one is delayed with respect to the other in the cell cycle), (3) inverted (genes have opposing profiles), and (4) inverted time-shifted. The local clustering method uses a dynamic programming algorithm to align the expression profiles of the genes in question. From the alignment, the method is able to determine which of the four types the relationship is and assign a clustering score measuring the significance of the relationship; for the Cho et al dataset, a score of 13 or above corresponds to a relationship significant to $p = 2.7 \times 10^{-3}$ (see supplementary materials).

[Page 39-10] 4. Examples of TF-target relationships
In Fig. 3 we examine specific regulatory networks.
4.1 SIM: ndd1 network
Ndd1, a cell cycle regulator during S and G_2/M transition ^{22,23} , acts as the sole regulating TF for <i>MCM21</i> , kinetochore protein required for normal cell growth from late S to early M phase ^{24,25} , and <i>STB5</i> , another transcription factor ²⁶ . All three genes display cell cycle periodicity. <i>NDD1</i> peaks early in S and sustains high expression until G2. The targets are co-expressed and time-shifted with respect to <i>NDD1</i> by one time-point, peaking later in S.
4.2 MIM: forkhead network
Ndd1 is recruited to G_2/M -transition-specific promoters by Fkh1 and Fkh2, two forkhead transcription activators ^{22,23,27} . Collectively, these three TFs regulate Dbf2, a kinase needed for cell-cycle regulation ²⁸ , and HDR1 (function unknown). The expression profiles of the three TFs are only loosely correlated and peak at different points from early S to late G_2 . The targets are time-shifted with respect to <i>FKH1</i> by two time-points and peak at the G_2/M transition. The local clustering scores show that their expression profiles are better correlated than in the preceding SIM example (Supplementary Table 3).
4.3 FFL: mbp1/swi4 network
In a feed-forward-loop, Mbp1 (a cell-cycle regulator controlling DNA replication and repair ^{6,29}) is the leading TF, Swi4 (a cell-cycle regulator controlling cell-wall and membrane synthesis ^{6,29}) is the intermediate TF, and <i>SPT21</i> (a TF involved in histone expression ³⁰) and <i>YML102C-A</i> (function unknown) are the target genes. The profiles of the intermediate TF and target genes are correlated and peak sharply in G ₁ . In contrast, the leading TF displays an inverted relationship, which highlights its involvement as a target repressor. (Previous studies have shown Mbp1 acts as an activator for ~50% its targets during the G ₁ /S transition and as a repressor for ~10% of its targets later in the cycle ^{6,7,29} .)
[Figure 3 caption] Figure 3. Expression profiles of example regulatory networks during the cell cycle. \bigcirc TF, \Box target. $ \rightarrow $ indicates a time-shift relationship. The inset describes the TF and target genes involved in the example. (A) Single input motif, (B) multi-input motif, and (C) feed-forward loop.
[Supplementary materials]
Determination of the expression relationships using local clustering method (excerpt from Jiang et al, JMB, 314:1053-1066) "We use a degenerate dynamical programming algorithm to find time-shifted and inverted correlations between expression profiles. The algorithm does not allow gaps between consecutive time points in the current version. However, there are some obvious extensions, which we explore later in the discussion section.
Supplementary Figure 2. "Three examples showing simultaneous (A), time-delayed (B), and inverted (C) relationships in the expression profiles. Note there are only 8 time points for each profile, while in the real yeast cell-cycle data there are 17 time points. Also, the expression ratio is not normalized, whereas in the real data each profile is normalized so that the averaged expression ratio is 0 and the standard deviation is 1. The thick segments of the expression profiles are the matched part. (D) The corresponding matrix E for the expression profile shown in (A). The corresponding matrix D is not shown because in this case the match score (the maximal score) is from E and not D . The numbers outside the border of the matrix are the expression profiles, and the light gray cells indicate the path of the optimal alignment between the expression profiles. The path starts from the match score and ends at the first encountered 0. (E) The corresponding matrix E for the expression profile shown in (B). Note the time-shifted relationship and how the length of the overall alignment can be shorter than 8 positions. (F) The corresponding matrix D for the expression profiles shown in (C). The matrix E is not shown because the heat match score is not shown the general matrix E is not shown

-- Editor-6 – Explanation of FFL --

Reviewer	You need to expand on what a "feed forward loop" is. Is it
Comment	where transcription factor R1 regulates R2 and then both
	R1 and R2 bind us of the gene of interest?
Author	Yes, a "feed forward loop" is where R1 regulates R2 and both of
Response	them together regulate the target.
	1. In order to make it clear what each network motif is, we
	added Figure 1A to show a schematic diagram for each motif.
	We also explained what they are in detail in the figure
	caption.
	2. For the three main motifs (SIM, MIM, and FFL) that are the
	focus of the manuscript, we also showed three real biological
	examples in Figure 3 to further illustrate their topological and
	hiological meanings
	3 For each example, we added a diagram as an inset to show
	what the motif is and why the example falls into this category
Excernt From	
Revised Manuscript	1.1 TF-target regulatory network
	We compiled a yeast regulation dataset from merging the results of genetic, biochemical and
	Chlp-chip experiments ^{4,3,7,10} . It contains 7,419 TF-target pairs from 180 TFs and 3,474 target
	we focus on the single input motif (SIM), multi-input motif (MIM) and feed-forward loop (FFL)
	as the data for the remaining motifs are too sparse.
	[Einsue 1 continu]
	[Figure 1 caption] Figure 1 Schematic representations of transcription regulatory motifs and temporal gene
	expression relationships. (A) Depiction of the six basic regulatory motifs: O TF, \Box target. (1)
	single input motif - target gene has one TF, (2) multi-input motif - target gene has multiple TFs,
	(3) feed-forward loop – leading TF (TF1) regulates an intermediate TF (TF2) and both regulate
	the target gene, (4) autoregulation – 1F targets itself, (5) multi-component loop – two 1Fs regulate each other in series (B)
	Schematic of the four gene expression relationships: (1) correlated (<i>ie</i> co-expressed - genes have
	similar profiles), (2) time-shifted (genes have similar profiles, but one is delayed with respect to
	the other in the cell cycle), (3) inverted (genes have opposing profiles), and (4) inverted time-
	shifted. The local clustering method uses a dynamic programming algorithm to align the expression profiles of the genes in question. From the alignment, the method is able to determine
	which of the four types the relationship is and assign a clustering score measuring the
	significance of the relationship; for the Cho et al dataset, a score of 13 or above corresponds to a
	relationship significant to $p = 2.7 \times 10^{-3}$ (see supplementary materials).
	[Figure 3 caption]
	Figure 3. Expression profiles of example regulatory networks during the cell cycle. O TF,
	\Box target. $ \rightarrow $ indicates a time-shift relationship. The inset describes the TF and target genes
	involved in the example. (A) Single input motif, (B) multi-input motif, and (C) feed-forward
	юор.

Reviewer	P3. you talk about co-expressed. Does it depend on how
Comment	highly expressed-where the "co" is likely to be more
	reliable-rather than transcripts which just go up a bit?
Author	The editor is right in that when the gene's expression level is too
Response	low, the measurements become relatively noisy and therefore not

-- Editor-7 – Question on expression level --

suitable for the analysis. In our analysis, we did not select highly-
expressed genes explicitly. But, we believe that genes with very
low expression levels are excluded from our analysis implicitly
during our calculation and our conclusions are not affected by the
gene's expression level. There are four main reasons:
1. All the microarray experiments (both Affymetrix and cDNA
microarray) have their own detection mechanisms. The
suspicious spots will be flagged and excluded from the final
results. Furthermore, using the same set of the Affymetrix
chips, Wodicka et al (Nature Biotechnology, 15:1359-1367)
found that 20% yeast genes are expressed in a very low level
(< 0.1 copy per cell). In our analysis, however, 95% genes
that have significant relationships with other genes are highly
expressed (> 0.1 copy per cell). This confirms that our
analysis is based on the true biological signal, rather than the
noise of the measurements.
2. It is well known that different genes have quite different
expression levels. When a transcription factor activates its
targets in the cell, the expression of these targets will all
increase, but to different individual levels. Therefore, it is the
relative shape, not the absolute level, of the expression
profile that is more interesting and more related to our
analysis.
3. Using the local clustering method, the clustering score
between a pair of genes are essentially the sum of the
products of their normalized expression levels at each time
point. Therefore, only highly-expressed genes with significant
changes in the expression levels could have a local clustering
score higher than the cut-off (13) used in the analysis.
4. Using Mann-Whitney U-test (i.e. non-parametric T-test), the
average expression level of the genes included in the
analysis is indeed much higher (P-value $< 1e-16$) than others.

-- Editor-8 – Explanation of LOD --

Reviewer	P4. The log odds ratio needs explaining. Is it the log of
Comment	the ratio of co-expression of two genes connected by
	having (say) MIM-to well what? A pair of genes chosen at
	random? The average co-expression of possible pairs of
	genes? And what is the category "All" in the x axis of
	(new) fig 2? In panel 1a "All" seems to be about 2, this
	means that something is 100 times (if using \log_{10}) as
	likely as what to occur by what (chance?). How come no
	enrichment has a LOD~1 (2 nd par) surely if the odds ratio
	is 1 then LOD is 0?
Author	1. In general, the LOD values are calculated by the formula:
Response	

	$IOD = \ln \left[\frac{P(relationship \mid regulation)}{P(relationship \mid regulation)}\right]$
	P(relationship)
	 LOD = ln[<u>P(relationship)</u>] where <i>P(relationship</i> <i>regulation</i>) is the possibility for gene pairs with certain regulatory relationships to have a specific expression or functional relationship. <i>P(relationship)</i> is the possibility for gene pairs randomly chosen from the dataset to have the corresponding expression or functional relationship. Because the LOD values are the log of the odds ratios, positive LOD values mean that the possibility is higher that random expectation, and vice versa. Detailed description of how to calculate each individual LOD value is given in the supplementary materials. So, in Figure 2A, the LOD value of bar "MIM" is the log of the ratio of co-expression of two genes co-regulated by the same MIM to that of "a pair of genes chosen at random" (the editor's first guess is correct). The category "All" includes all gene pairs co-regulated by at least one common transcription factor. For instance, if gene A is regulated by regulators 1 & 2 and gene B is regulated by regulators 2 & 3, the gene pair "A-B" won't be included in the category "MIM", because they belong to two different MIMs. However, the "A-B" pair is included in the category "All", because they share one common regulator – regulator 2. We defined the LOD value here to be the natural logarithm of the odds ratio. So, in Figure 2A, "All" is 1.3, which means that the probability for the gene pairs chosen at random. The editor is absolutely right. No enrichment should have a LOD value of 0. The probability for gene pairs co-regulated by the same FFLs to have the same function is still significantly higher than gene pairs chosen at random. However, compared with other categories (especially "SIM"), the functional enrichment of FFL is the lowest. This is what
	we meant by saying "FFL motifs do not display much
	functional enrichment (LOD \sim 1). We carefully revised this
Excernt From	[Page 3-4]
Revised Manuscript	1.3 Statistical formalism
	We use several statistics to quantify the significance of our observations. The <i>p</i> -value is the probability that an observation (<i>eg</i> co-expression of target genes) would be made by chance, and is calculated using the cumulative binomial distribution:
	$P(c \ge c_o) = \sum_{c=c_o}^{N} [\frac{N!}{N!(N-c)!}] p^c (1-p)^{N-c}$
	N is the total number of possible gene pairs in the data, c_o is the number of observed pairs with a specific relationship (<i>ie</i> from expression or function), and p is the probability of finding a gene pair with the same relationship randomly (picking from the entire genome).
	The log odds ratio (LOD) is the enrichment a particular relationship in the presence of regulation

with respect to random expectation for the occurrence of the relationship:
$IOD = ln \left[\frac{P(relationship regulation)}{P(relationship regulation)} \right]$
P(relationship)
$P(relationship regulation)$ is the probability for gene pairs with certain regulatory relationship (eg TF=>target) to have a specific expression or functional relationship (eg correlated expression). $P(relationship)$ is the probability for randomly selected gene pairs to have the same expression or functional relationship. When we report this together with p-values, we use the following notation {log p-value,LOD value}.
[Page 4] Interestingly, FFL motifs display the smallest enrichment {-11,1.5}.
[Supplementary materials]
Calculation of the LOD values
Figure 2A
$LOD = \ln[\frac{P(co - exp \mid co - reg)}{P(co - exp)}]$
where $P(co-exp co-reg)$ is the possibility for genes co-regulated by a certain motif to be co- expressed (i.e. correlated), which is calculated as the percentage of correlated pairs between all possible pairs of co-regulated genes. $P(co-exp)$ is the possibility for gene pairs randomly chosen from the dataset to be co-expressed, which is calculated as the percentage of correlated pairs between all possible gene pairs in Cho's dataset.
Figure 2B
$LOD = \ln[\frac{P(same - function \mid co - reg)}{P(same - function)}]$
where $P(same-function co-reg)$ is the possibility for gene pairs co-regulated by a certain motifs to have the same functions. $P(same-function)$ is the possibility for gene pairs randomly chosen from the dataset to have the same functions.
····
Table 1
$LOD = \ln[\frac{P(co - exp \mid co - reg)}{P(co - exp)}]$
where all the calculations are very similar to those in Figure 2A, except that the expression relationships between gene pairs are determined using Pearson correlation coefficient in different microarray datasets.
All the possibilities in the analysis are calculated in the same way as in Figure 2A.

-- Editor-9 – Explanation of FFL --

Reviewer	You need to expand on what a "feed forward loop" is. Is it
Comment	where transcription factor R1 regulates R2 and then both
	R1 and R2 bind us of the gene of interest?
Author	Please refer to response Editor-6.
Response	

-- Ref1-1 – Other microarray datasets --

Reviewer	The	aut	thors	used	only	expr	essi	on data	for	the	yeast	cell
Comment	cyc.	le.	I see	e no	reason	why	it	should	be s	so. Fo	or exar	nple,
	it	is	well	knc	wn th	at s	some	regula	itors	in	yeast	are

	activated during sporulation, under stressful conditions, etc Therefore, using only one expression dataset reduce the possibility to find positive expression correlation
	between regulator and their target genes.
Author	Please refer to response Editor-3.
Response	

-- Ref1-2 – Explanation of local clustering method --

Reviewer	The authors should better explain the biological								
Comment	implication of concepts like co-expression, inverted and								
	time shifted profiles. After all, general readers might be								
	unfamiliar with their JMB paper on the subject.								
Author	1. The goal of this paper is to discover the biological meanings								
Response	of these expression relationships within the regulatory								
•	networks. After careful analysis, we were able to show that (i)								
	co-regulated target genes tend to be co-expressed: (ii) The								
	regulators show delayed relationships with their targets								
	although the enrichment is not very clear. This is summarized								
	in "conclusion" section.								
	2. We showed the real expression profiles of the regulators and								
	their targets within three different motifs in Figure 3 and								
	discussed in detail the biological implication of the expression								
	relationships in the context of the different regulatory								
	relationships in the context of the different regulatory								
	relationships.								
	Please refer to response Editor-5.								
Excerpt From	[The changes are the same as in response Editor-5.]								
Revised Manuscript									

-- Ref1-3 – Number of connections with different regulatory modes --

Reviewer Comment	Can the authors provide a rough estimate on the number of positive/negative regulatory connections? Does it happen that a single regulatory gene activates one gene but represses another?							
Author	1. There are 144 positive regulatory connections;							
Response	 There are 79 negative regulatory connections; 18 regulators activate some of their targets but repress others; We also surveyed the number of positive/negative regulatory connections within different motifs. The results are recorded in Table 1. 							
Excerpt From	[Table 1]							
Revised Manuscript	Table 1. Summary of transcription regulatory network dataset.							

		motifs [†]	SIM	MIM	FFL	ALL			
		# TFs	119	118	97	188			
		# targets	1754	986	511	3416			
	rget s	Total	1754	2781	1523	7419			
	F-tai pairs	Activation [‡]	37	50	19 - 33 [§]	144			
	Г #	Repression [‡]	12	34	23 - 10 [§]	79			
	<u>ل</u> ه خ	Stress response	0.44*	3.55*	0.59	0.88*			
	r cc get	Sporulation	0.03	0.25	0.08	-0.05			
	fo tar	Diauxic shift	0.11*	1.78*	0.30*	0.30*			
	sed	DNA damage	1.24*	4.87*	1.26*	2.14*			
	o vali oress pa	Cell Cycle (Spellman et al.)	0.37*	2.09*	1.62*	0.52*			
	exi-O	" " (Cho et al)	0.29*	2.79*	1.35*	0.93*			
	_	" " (Zhu et al)	0.22*	2.50*	0.91*	0.64*			
	* LOD values with P-value smaller than 1e-05 (see supplementary Table 1) † The abbreviation for the motifs is the same as in the caption of Figure 1A. ALL, All the TF- target pairs. There are 3 smaller motifs: Auto, 22 targets, MCL, 31 targets, RC, 119 targets. The random expectation for the number of targets is 6130, the number of yeast genes. The random								
	expecta	ation for the nur	nber of g	ene pairs	in yeast	is 18785	385 = 6130(6129)/2, which is obtained		
	by cour	nting all pairs b	etween y	east gene	s.				
	‡ Posit	tive expression	relations	ships (co	rrelated	and time	-shifted) are considered as activation		
	signals	, while negative	ve relatio	onships (inverted	and inv	erted time-shifted) are considered as		
	repress	ion signals. Ov	erall, 18	regulator	s activat	e some o	f their targets but repress others. Note		
	this is o	distinct from the	e number	of activa	ator relati	ons deter	rmined experimentally (as described in		
	 §2.4 and §3.2) § We show the number of relations for FFL:TF1 and FFL: TF2. £ Log odds ratios for target gene pairs having correlated profiles in different expression datasets. The local clustering method cannot be applied, so expression correlation is measured using the 								
	Pearson	n correlation co	oefficient	t. Co-exp	pressed g	ene pair	s are those in the top 1% of largest		
	correlation coefficients.								

-- Ref1-4 - Number of AND gates --

Reviewer	Would it be possible to investigate the number of AND
Comment	gates (two transcription factors are needed simultaneously
	to activate a single target gene)?
A sufficiency	
Author	1. Determined by the expression data, there are 3 AND gates;
Response	2. We cut out this section as we felt it was too complex to

-- Ref1-5 - Number of different types of FFLs --

Reviewer	The Lee et al paper gives an estimate on the number but
Comment	not the type of feedback loops. What is the fraction of
	positive and negative feedback loops, and why?
Author	1. In the Lee et al paper, they discussed in detail feedforward
Response	loops (FFL), not feedback loops. Therefore, there might be a
	typo in the referee's comment.
	2. We investigated the number of different types of FFLs determined from the expression data and added a paragraph together with supplementary Table 2 to discuss the results;
	3. We also summarized the number of different types of regulatory connections between R1's and their targets and those between R2's and their targets. Table 1b is added in to show the results;

Excerpt From	[Page 7]								
Revised Manuscript	FFL motifs pre	esent the most i	interesting and	d complex relationships. The leading TFs in the motif					
	(denoted TF1)	generally hav	e negative re	elationships with the target genes i.e. inverted {-					
	2,0.82} or inve	erted time-shift	ed {-10,2.0}.	The intermediate TFs (TF2) exhibit all four types of					
	relationships; The most common arrangement (55% of FFLs, supplementary table 2) is where								
	the leading TF has a negative relationship with the target and the intermediate TF has a positive								
	one (<i>ie</i> correlated or time-shifted). (Note, however, there are only 11 FFLs for which both TF1								
	and TF2 have s	significant expr	ession relatio	nships with the targets.)					
		0 1							
	[Supplementar	y Table 2]							
	Supplementar	v Table 2. Nu	mber of FFL	s with different regulatory relationships between					
	the regulators	the regulators and their targets determined from the expression data							
	Туре о	of FFLs	# of EEL a						
	TF1-target	TF2-target	# 01 FFLS						
	P* P 3								
	Р	Ν	2						
	Ν	Р	6						
	N N 0								
	* P: positive re	lationships bet	ween the TFs	and their targets; N: negative relationships between					
	the TFs and their targets.								
	[Other changes are the same as in response Ref1-3]								
	* P: positive re the TFs and the	lationships bet eir targets.	ween the TFs	and their targets; N: negative relationships between					
	[Other changes are the same as in response Ref1-3]								

-- Ref1-6 – Another perspective on the poor co-expression of genes co-regulated by SIMs --

Reviewer	The authors claim that co-expression is more tightly
Comment	regulated when more than one transcription factors (TF)
	are involved. But what if the yeast genome contains other,
	yet unidentified TFs. In this case, single input motifs of
	two genes would be part of a multiple - possibly only
	partially overlapping - motifs. The authors should at
	least mention this problem.
Author	We agree with the referee and modified the text accordingly.
Response	
Excerpt From	[Page 5]
Revised Manuscript	The differences in enrichment (ie LOD values) indicate that expression is much more tightly
	regulated when multiple TFs are involved. However, with >100 yeast transcription factors yet to
	be investigated ¹⁶ , unidentified TF-target relationships will probably alter the classification of
	SIM target genes to MIM or FFL networks in the future.

-- Ref2-1 - More concise title --

Reviewer	The title could be made more concise as follows:
Comment	'Correlation of gene expression in regulatory network
	motifs'
Author	We've changed the title to make it more concise. The title now is:
Response	Genome-wide analysis of gene expression relationships in
•	transcriptional regulatory networks
Excerpt From	[Title]
Revised Manuscript	Genome-wide analysis of gene expression relationships in transcriptional regulatory
	networks

-- Ref2-2 - More regulatory data --

Reviewer	These network motifs were found by analysis of ChIp-chip
Comment	experiments described Lee et al. (2002). It would make
	sense to expand the data set to all known transcriptional
	regulatory relationships, such as those in the TRANSFAC
	database.
Author	The referee made an excellent point here. Now, we added in not
Response	only the TRANSFAC database, but also Chlp-chip experiments
	by Horak et al. (2002) and transcriptional regulatory data by
	Guelzim et al. (2002) Therefore, our calculations have taken into
	Gueizini et al. (2002). Therefore, our calculations have taken into
	account all available transcriptional regulatory data, which consist
	of 180 transcription factors and 3474 genes (> half of yeast
	genome) in total. Compared with our previous dataset (106
	regulators and 2416 genes), new information is more than half.
	And, the results remain the same.
Excerpt From	[Abstract]
Revised Manuscript	From merging a number of data sources, we created an extensive map of the transcriptional
	regulatory network in yeast, comprising 7419 interactions connecting 180 transcription factors
	(TFs) with their target genes. We integrated this network with gene-expression data, relating the
	expression profiles of TFs and target genes. We found that genes targeted by the same TF tend
	to be co-expressed, with the degree of co-expression increasing if genes share more than one 1F.
	Moreover, shared largels of a 1F tend to have similar cellular functions. In contrast, the
	explession relationships between the 11's and then targets are much more complicated, often exhibiting time-shifted or inverted behavior.
	[Page 3]
	1.1 TF-target regulatory network
	We compiled a yeast regulation dataset from merging the results of genetic, biochemical and
	ChIp-chip experiments ^{4,3,7,10} . It contains 7,419 TF-target pairs from 180 TFs and 3,474 target
	genes (1 able 1). Regulatory networks can be simplified into six basic motifs (Fig. 1a) ³¹⁰ . Here,
	we rocus on the single input motif (SIN), multi-input motif (MINI) and reed-forward loop (FFL)
	as the data for the remaining mours are too sparse.

-- Ref2-3 - Multiple parallel FFLs? --

Reviewer	In section 1., it says target genes part of a feed forward
Comment	loop also display significant correlation. Is this
	referring to a situation where multiple genes are
	regulated by the same specific (R2) and general (R1)
	transcription factor, in other words multiple parallel
	feed forward loops?
Author	1. Yes, they are multiple parallel feed forward loops.
Response	2. Please refer to response Editor-6.
Excerpt From	[The changes are the same as in response Editor-6]
Revised Manuscript	

-- Ref2-4 – Summary table --

Reviewer	A table giving the number of SIMs, MIMs and FFLs studied,
Comment	and the percentages that have the specific features
	described, would be useful.
Author	We agree with the referee and changed the manuscript
Response	accordingly.

	1. V	Ve summ statistics or	arized n the y	the reast r	numbe egulat	er of ory ne	all six motifs and other tworks in Table 1.
	2. V	Ve added	the s	pecific	: LOD	value	es and P values for each
	f	eature in th	ne ma	in text	-		
	3. V	Ve added	the sp	pecific	perce	entage	s for most features in the
	r	nain text.	The	perce	ntage	of ea	ach feature can also be
	C	alculated of	easily	from it	is LOD) value	Э
Excerpt From Revised Manuscript	[Table]]] Summary of t	ranscript	ion regul	atory net	work dat	raset
Revised Wandscript		motifs [†]	SIM	MIM	FFL		1
		# TFs	119	118	97	188	<u>j</u>
		# targets	1754	986	511	3416	
	rget s	Total	1754	2781	1523	7419	
	F-ta pain	Activation [‡]	37	50	19 - 33 [§]	144	
	L #	Repression [‡]	12	34	23 - 10 [§]	79]
	<u>ل</u> ه ب	Stress response	0.44*	3.55*	0.59	0.88*	1
	or co arge	Sporulation Diauxic shift	0.03	0.25	0.08	-0.05 0.30*	-
	ies f ed ti irs [£]	DNA damage	1.24*	4.87*	1.26*	2.14*	1
	valu ress pa	Cell Cycle (Spellman et al.)	0.37*	2.09*	1.62*	0.52*	
	exp exp	" " (Cho et al)	0.29*	2.79*	1.35*	0.93*	1
	* I OD	"" (Zhu et al)	0.22*	2.50* aller than	0.91* 1e-05 (s	0.64*	mentary Table 1)
	† The a	abbreviation for	r the mot	tifs is the	same as	in the ca	aption of Figure 1A. ALL. All the TF-
	target p	airs. There are	3 smalle	r motifs:	Auto, 22	targets,	MCL, 31 targets, RC, 119 targets. The
	random	expectation for	or the nu	mber of t	targets is	6130, th	le number of yeast genes. The random
	expecta	ation for the nui	nber of g	gene pairs	s in yeast	ıs 18785	385 = 6130(6129)/2, which is obtained
	† Posit	tive expression	relation	ships (co	rrelated	and time	e-shifted) are considered as activation
	signals	, while negativ	ve relatio	onships (inverted	and inv	erted time-shifted) are considered as
	repress	ion signals. Ov	erall, 18	regulator	rs activat	e some c	of their targets but repress others. Note
	this is o	distinct from the	e number	of activa	ator relati	ions dete	rmined experimentally (as described in
	§2.4 an 8 We s	a §3.2) how the numbe	r of relat	ions for F	FL-TF1	and FFL	- TF2
	£ Log o	odds ratios for t	arget ger	ne pairs h	aving con	rrelated p	profiles in different expression datasets.
	The loc	cal clustering m	nethod ca	unnot be a	applied, s	so expres	ssion correlation is measured using the
	Pearson	n correlation c	oefficien	t. Co-exp	pressed g	gene pair	is are those in the top 1% of largest
	correla	tion coefficients	S.				
	[Page 5	5]					
	First, w	ve investigate e	xpression	n relation	ships bet	ween ge	nes targeted by the same TFs. Overall,
	3.3% 0	f target gene pa	airs are c	o-express	ed, whic	h is four	times greater than random expectation
	{-12,1.	3} (Fig. 2a, bar	-ALL). V	ve detect	tew inve	erted or ti	me-shifted relationships (§2.4).
	The lev	vel of correlation	on is ver	y depend	lent on t	he type	of regulatory network motif (Fig. 2a).
	Genes	targeted by indi	ividual T	Fs (SIM)	are not s	strongly	correlated: just 1.3% of target pairs are
	co-exp	ressed though the	his is sign	nificantly	higher th	han expe	cted $\{-11, 0.29\}$. Correlation is stronger
	for gen	es targeted by 1	multiple,	common	1 Fs: 24 1 63 Sin	.4% Of N milar res	11. It target pairs $\{-12, 3.2\}$ and 5.0% of ults are observed for other expression
	dataset	$s^{3,13-17}$ (Table 1)).	ηση ₍ =12	,1.0 ₅ . 311	innar res	and are observed for other expression

-- Ref2-5.1 – Explanation of AND-gate --

Reviewer	In section 3., the behaviour of feed forward loops has to
Comment	be clarified. First, the authors must explain what an AND-
	gate is.
Author	We cut out this section as we felt it was too complex to describe

Response	in detail.

Reviewer	Next, they should specify the different combinations of					
Comment	inhibition and activation that occur in the (mostly					
	coherent?) FFLs.					
Author	1. We added in Table 1 to summarize the number of different					
Response	combinations of inhibition and activation that occur in all three					
•	motifs we analyzed:					
	2 Furthermore we analyzed the expression relationships					
	between the known activators (or repressors) and their					
	targets. These known activation and inhibition regulations are					
	determined by genetic or biochemical methods. We found					
	that (1) On averaging of an artificated many using is much					
	that (1) Co-expression of co-activated gene pairs is much					
	better than that of co-repressed gene pairs; (2) The					
	probability of co-activated gene pairs having negative					
	expression relationships is lower than random expectation;					
	(3) Activators tend to have correlated relationships with their					
	targets; while inhibitors tend to have inverted relationships					
	with their targets.					
Excerpt From	[Table 1]					
Revised Manuscript	Table 1. Summary of transcription regulatory network dataset.					
	motifs ^T SIM MIM FFL ALL					
	# IPS 119 118 97 188 # targets 1754 986 511 3416					
	5 Total 1754 2781 1523 7419					
	Activation [‡] 37 50 19 - 33 [§] 144					
	Image: Repression # 12 34 23 - 10 [§] 79					
	Stress response 0.44* 3.55* 0.59 0.88*					
	Sporulation 0.03 0.25 0.08 -0.05 Diauxic shift 0.11* 1.78* 0.30* 0.30*					
	DNA damage 1.24* 4.87* 1.26* 2.14*					
	Cell Cycle 0.37* 2.09* 1.62* 0.52*					
	U (Cho et al) 0.29* 2.79* 1.35* 0.93*					
	* LOD values with P-value smaller than 1e-05 (see supplementary Table 1)					
	† The abbreviation for the motifs is the same as in the caption of Figure 1A. ALL, All the TF-					
	target pairs. There are 3 smaller motifs: Auto, 22 targets, MCL, 31 targets, RC, 119 targets. The					
	random expectation for the number of targets is 6130, the number of yeast genes. The random expectation for the number of gene point in $12785285 = 6120/(6120)/2$, which is obtained					
	by counting all pairs between yeast genes					
	[‡] Positive expression relationships (correlated and time-shifted) are considered as activation					
	signals, while negative relationships (inverted and inverted time-shifted) are considered as					
	repression signals. Overall, 18 regulators activate some of their targets but repress others. Note					
	(as described in 82.4 and 83.2)					
	§ We show the number of relations for FFL:TF1 and FFL: TF2.					
	£ Log odds ratios for target gene pairs having correlated profiles in different expression datasets.					
	The local clustering method cannot be applied, so expression correlation is measured using the					
	correlation coefficients.					
	[Page 7-8]					
	3.2 Relation to Regulatory-signal Type					

-- Ref2-5.2 - Inhibition vs. Activation --

As in §2.4, we can measure the TF-target expression relationships when the type of regulatory signals is taken into account. Though the data is too sparse to make statistically sound
conclusions, we try to make some observations. Unsurprisingly, activators are co-expressed with
their targets {-2,0.63} (Fig. 2f), and comprise over 50% of TF-target pairs with significant
expression relationships. We also find that repressors exhibit inverted {-2,1.1} and inverted
time-shifted relationships {-2,1.2}. There are unexpected results too. Activators display
significant inverted time-shifted relationships {-6,1.8} and repressors show (normal) time-
shifted relationships. There are several reasons for this: A sizeable proportion of TFs (15%) act
both as activators and repressors, in some cases for the same target. Furthermore, the combined
effect of multiple TFs in MIM and FFL motifs can have an unpredictable effect on target
expression

-- Ref2-5.3 – Number of different types of FFLs --

Reviewer	Then the number of FFLs for each combination could b	be
Comment	given, as inferred by them from the expression data.	
Author	Please refer to response Ref1-5.	
Response		

-- Ref2-5.4 – Examples of Motifs --

Reviewer	At the moment, all that is said is that there is often a
Comment	direct correlation of the specific transcription factors,
	and an inverted time-shifted correlation with the general
	transcription factors for both the target and R2. If this
	is the most common type of FFL, then it would be nice to
	illustrate it with a specific example from their results.
Author	1. Yes, this is the most common type of FFL (i.e. R1 represses
Response	both R2 and the target. R2 activates the targets), despite the
•	fact that the statistics are not very good:
	2 A specific example (Mbp1 represses the expression of SWIA
	2. A specific example (while the expression of CW14 and the
	and their targets, while the expression of SW14 and the
	targets is highly correlated) is given in Figure 3C to illustrate
	the biological importance of our analysis;
Excerpt From	[Page 7]
Revised Manuscript	FFL motifs present the most interesting and complex relationships. The leading TFs in the motif
	(denoted TF1) generally have negative relationships with the target genes i.e. inverted {-
	2,0.82} or inverted time-shifted {-10,2.0}. The intermediate TFs (TF2) exhibit all four types of
	relationships; The most common arrangement (55% of FFLs, supplementary table 2) is where
	the leading TF has a negative relationship with the target and the intermediate TF has a positive
	one (<i>ie</i> correlated or time-shifted). (Note, however, there are only 11 FFLs for which both 1F1
	and 1F2 have significant expression relationships with the targets.)
	[Page 9-10]
	4.3 FFL: mbp1/swi4 network
	In a feed-forward-loop, Mbp1 (a cell-cycle regulator controlling DNA replication and repair ^{6,29})
	is the leading TF, Swi4 (a cell-cycle regulator controlling cell-wall and membrane synthesis ^{6,29})
	is the intermediate TF, and SPT21 (a TF involved in histone expression ³⁰) and YML102C-A
	(function unknown) are the target genes. The profiles of the intermediate TF and target genes are
	correlated and peak sharply in G ₁ . In contrast, the leading TF displays an inverted relationship,
	which highlights its involvement as a target repressor. (Previous studies have shown Mbp1 acts
	as an activator for ~50% its targets during the G_1/S transition and as a repressor for ~10% of its
	targets later in the cycle (17.)
	[Figure 3 cantion]
	Figure 3. Expression profiles of example regulatory networks during the cell cycle. O TF.

 □ target. → indicates a time-shift relationship. The inset describes the TF and target genes involved in the example. (A) Single input motif, (B) multi-input motif, and (C) feed-forward loop. [Supplementary Table 2] Supplementary Table 2. Number of FFLs with different regulatory relationships between the regulators and their targets determined from the expression data 			
Type of FFLs		# of FFL s	
TF1-target	TF2-target	# UI FFLS	
P*	Р	3	
Р	Ν	2	
Ν	Р	6	
Ν	Ν	0	
* P: positive re the TFs and the	elationships bet ir targets.	tween the TFs	and their targets; N: negative relationships between

-- Ref2-6 – Explanation of LODs --

Reviewer	Figure: there should be a more complete description of how			
Comment	the log odds values are calculated.			
Author	Please refer to response Editor-8.			
Response				

-- Ref2-7 – Minor problems of format and language --

Reviewer	Details of references and wording should be attended to
Comment	more carefully, for instance the Lee et al reference in
	the abstract, and 'developed in our lab' in the figure
	legend.
Author	We agree with the referee and revised our manuscript very
Response	carefully. Specifically, we removed the Lee et al reference in the
•	abstract, and 'developed in our lab' in the figure caption.
Excerpt From Revised Manuscript	[Abstract] From merging a number of data sources, we created an extensive map of the transcriptional regulatory network in yeast, comprising 7419 interactions connecting 180 transcription factors (TFs) with their target genes. We integrated this network with gene-expression data, relating the expression profiles of TFs and target genes. We found that genes targeted by the same TF tend to be co-expressed, with the degree of co-expression increasing if genes share more than one TF. Moreover, shared targets of a TF tend to have similar cellular functions. In contrast, the expression relationships between the TFs and their targets are much more complicated, often exhibiting time-shifted or inverted behavior.
	[Figure 1 Caption] (B) Schematic of the four gene expression relationships: (1) correlated (<i>ie</i> co-expressed - genes have similar profiles), (2) time-shifted (genes have similar profiles, but one is delayed with respect to the other in the cell cycle), (3) inverted (genes have opposing profiles), and (4) inverted time-shifted. The local clustering method uses a dynamic programming algorithm to align the expression profiles of the genes in question. From the alignment, the method is able to determine which of the four types the relationship is and assign a clustering score measuring the significance of the relationship; for the Cho et al dataset, a score of 13 or above corresponds to a relationship significant to $p = 2.7 \times 10^{-3}$ (see supplementary materials).