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RESPONSE LETTER 
 

-- Editor-1 – Abstract too long -- 
Reviewer 
Comment 

The abstract is too long and should be ~100 words-so I 
suggest you move the marked section until later. 

Author 
Response 

We changed the abstract according to the editor’s comments on 
the marked manuscript. 

Excerpt From 
Revised Manuscript 

[Abstract] 
From merging a number of data sources, we created an extensive map of the transcriptional 
regulatory network in yeast, comprising 7419 interactions connecting 180 transcription factors 
(TFs) with their target genes. We integrated this network with gene-expression data, relating the 
expression profiles of TFs and target genes. We found that genes targeted by the same TF tend 
to be co-expressed, with the degree of co-expression increasing if genes share more than one TF. 
Moreover, shared targets of a TF tend to have similar cellular functions. In contrast, the 
expression relationships between the TFs and their targets are much more complicated, often 
exhibiting time-shifted or inverted behavior. 

 

-- Editor-2 – Reference style -- 
Reviewer 
Comment 

The reference articles need titles 

Author 
Response 

We changed the reference style accordingly. 

Excerpt From 
Revised Manuscript 

[Reference] 
1 Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. (1995) Quantitative monitoring 

of gene expression patterns with a complementary DNA microarray. [see comments.]. 
Science 270, 467-70 

2 Chee, M. et al. (1996) Accessing genetic information with high-density DNA arrays. 
Science 274, 610-4 

… 
 

-- Editor-3 – Other microarray datasets -- 
Reviewer 
Comment 

Referee 1 makes the point you have only looked at the 
cell-cycle. Would it be an idea to extend the analysis to 
one other condition? 
 

Author 
Response 

1. The referee and the editor are right in that some transcription 
factors only activate (or repress) their targets in response to 
specific conditions (sporulation, heat-shock, etc). In this 
sense, we should extend the analysis to other conditions. 
However, we have shown that the regulators do not have 
significant enrichment of correlated relationships with their 
targets; instead they tend to have delayed relationships. In 
order to detect these more subtle temporal relationships, it 
requires that (1) the expression dataset should be a time-
series dataset with a considerable number of time points; (2) 
the interval between time points should be uniform and 
relatively small for a good resolution. These are also the 
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requirements to use the local clustering method. 
Unfortunately, most of the microarray datasets under these 
conditions are not time-series datasets or have big intervals 
and few time points. Therefore, we cannot analyze the 
relationships between the regulators and their targets within 
these datasets. We added this explanation in the text. 

2. We did extend our analysis of co-regulated genes to other 
microarray datasets. We used the Pearson correlation 
coefficient method to determine the correlated relationships 
between co-regulated target genes within these datasets. We 
found that, although the specific LOD values are different, the 
general trend remains the same as our previous results from 
the cell cycle dataset, i.e. (1) in general, co-regulated genes 
tend to be co-expressed; (2) co-expression is much better 
when genes are co-regulated by more than one regulators. 
We added these new results in the text. 

Excerpt From 
Revised Manuscript 

[Page 3] 
1.2 Gene expression dataset 
We obtained expression profiles of yeast genes through two complete cell cycles.11 Between the 
expression profiles of pairs of genes, we used a local clustering method to calculate four types of 
temporal relationships as diagramed in Fig. 1b12: correlated, time-shifted, inverted, and inverted 
time-shifted. To find these relationships, expression levels must be assessed over a time-course, 
with many measurements, at small and uniform intervals. Most available datasets do not satisfy 
these conditions, being only suitable for simple correlation calculations (ie co-expression); thus, 
we can only conduct detailed analysis on the cell-cycle dataset. Nevertheless, similar overall 
results are observed in other microarray datasets. 
 
[Page 5] 
Similar results are observed for other expression datasets3,13-17 (Table 2). 
 
[Table 1]  
Table 1. Summary of transcription regulatory network dataset. 

motifs† SIM MIM FFL ALL

# TFs 119 118 97 188
#  targets 1754 986 511 3416

Total 1754 2781 1523 7419

Activation‡ 37 50 19 - 33§ 144

Repression‡ 12 34 23 - 10§ 79

Stress response 0.44* 3.55* 0.59 0.88*
Sporulation 0.03 0.25 0.08 -0.05
Diauxic shift 0.11* 1.78* 0.30* 0.30*
DNA damage 1.24* 4.87* 1.26* 2.14*

Cell Cycle 
(Spellman et al.) 0.37* 2.09* 1.62* 0.52*

" " (Cho et al) 0.29* 2.79* 1.35* 0.93*
" " (Zhu et al) 0.22* 2.50* 0.91* 0.64*
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* LOD values with P-value smaller than 1e-05 (see supplementary Table 1) 
† The abbreviation for the motifs is the same as in the caption of Figure 1A. ALL, All the TF-
target pairs. There are 3 smaller motifs: Auto, 22 targets, MCL, 31 targets, RC, 119 targets. The 
random expectation for the number of targets is 6130, the number of yeast genes. The random 
expectation for the number of gene pairs in yeast is 18785385 = 6130(6129)/2, which is obtained 
by counting all pairs between yeast genes.  
‡ Positive expression relationships (correlated and time-shifted) are considered as activation 
signals, while negative relationships (inverted and inverted time-shifted) are considered as 
repression signals. Overall, 18 regulators activate some of their targets but repress others. Note 
this is distinct from the number of activator relations determined experimentally (as described in 
§2.4 and §3.2) 
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§ We show the number of relations for FFL:TF1 and FFL: TF2. 
£ Log odds ratios for target gene pairs having correlated profiles in different expression datasets. 
The local clustering method cannot be applied, so expression correlation is measured using the 
Pearson correlation coefficient. Co-expressed gene pairs are those in the top 1% of largest 
correlation coefficients. 
 
[Supplementary Table 1] 
Supplementary Table 1. P-values* for the LOD values in Table 1 

Motif† Stress 
response Sporulation Diauxic 

shift 
DNA 

damage 
Cell-cycle by 

Spellman et al
Cell-cycle by 

Cho et al 
Cell-cycle by 

Zhu et al 

SIM 2.50E-06 0.2958 4.88E-06 1.33E-11 2.28E-11 1.29E-11 2.28E-09 

FFL 0.0097 0.2829 5.71E-07 5.81E-07 0 3.95E-13 0 

MIM 0 0.1351 0 9.78E-13 3.73E-13 1.48E-12 3.22E-15 

ALL 4.67E-11 0.9877 0 1.16E-10 5.96E-10 8.88E-10 0 
Correlation 
coefficient 
Cut-off‡ 

0.70 0.95 0.90 0.80 0.70 0.70 0.70 

* P-values are calculated by the formula given in text. 
† The abbreviation for the motifs is the same as in the caption of Figure 1. 
‡ Correlation coefficient cut-off is determined as the Pearson correlation coefficient, above 
which roughly top 1% gene pairs with the largest correlation coefficient are. The correlation 
coefficient cut-offs are equivalent to local clustering score of 13. 

 

-- Editor-4 – Measurement of expression correlation -- 
Reviewer 
Comment 

What is expression correlation exactly and how is it 
measured? Is it the correlation over time drawn from 
expression of gene a vs gene b? 

Author 
Response 

1. Yes, expression correlation is the correlation over time drawn 
from expression of gene a vs gene b. We added the 
explanation in the caption of Figure 1. 

2. Please refer to response Editor-5. 
Excerpt From 
Revised Manuscript 

[Figure 1 caption] 
The local clustering method uses a dynamic programming algorithm to align the expression 
profiles of the genes in question. From the alignment, the method is able to determine which of 
the four types the relationship is and assign a clustering score measuring the significance of the 
relationship; for the Cho et al dataset, a score of 13 or above corresponds to a relationship 
significant to p = 2.7×10-3 (see supplementary materials). 

 

-- Editor-5 – Explanation of expression relationships-- 
Reviewer 
Comment 

I think the time courses (which you label “Supplementary 
material”) need to be shown a new fig 1. (You will then 
need to re-label the figures). You need to make clearer 
whether all the panels show what you later call 
“correlation “, so do time shifted and inverted also fall 
into the class of “correlated”? Or are you just talking 
about “simultaneous” as correlated?  We also need some 
details as to the statistical tests that are used to 
determine correlation (of the three types). 

Author 
Response 

1. We changed the old “supplementary material” to be the new 
Figure 1, as the editor suggested. 

2. The “correlated” relationship is the “simultaneous” 
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relationship shown in Figure 1B.1. And, only the class of 
“correlated” is considered as “correlation” or “co-expression”. 
In order to prevent the confusion, we removed the term 
“simultaneous relationship” and named Figure 1B.1 as 
“correlated relationship (i.e. co-expression)”. We also labeled 
Figure 1B.1 as “correlated (i.e. co-expression)”. Moreover, we 
modified the text to make it clear that we only consider 
“correlated” relationship as “co-expression”. 

3. In order to make it clearer what each relationship means 
biologically, we showed real expression profiles of 
transcription factors and their targets in three examples in 
Figure 3. Different expression relationships between these 
genes within each example are discussed in detail in the 
manuscript. 

4. The local clustering method uses a dynamic programming 
algorithm to align the expression profiles of the genes in 
question. From the alignment, the method is able to 
determine which type (of the four types) the relationship is 
and assign a clustering score as a statistical measurement of 
the alignment. We added the calculation details of the local 
clustering method in the Figure 1 caption. We also adapted 
the description of the method from our previous JMB paper 
and added it in the “Supplementary materials”. The reader 
should be able to repeat the calculations to determine the 
expression relationships after she/he reads the paper and the 
supplementary materials. 

Excerpt From 
Revised Manuscript 

[Page 3] 
1.2 Gene expression dataset 
We obtained expression profiles of yeast genes through two complete cell cycles.11 Between the 
expression profiles of pairs of genes, we used a local clustering method to calculate four types of 
temporal relationships as diagramed in Fig. 1b12: correlated, time-shifted, inverted, and inverted 
time-shifted. To find these relationships, expression levels must be assessed over a time-course, 
with many measurements, at small and uniform intervals. Most available datasets do not satisfy 
these conditions, being only suitable for simple correlation calculations (ie co-expression); thus, 
we can only conduct detailed analysis on the cell-cycle dataset. Nevertheless, similar overall 
results are observed in other microarray datasets. 
 
[Figure 1 caption] 
Figure 1. Schematic representations of transcription regulatory motifs and temporal gene 
expression relationships. (A) Depiction of the six basic regulatory motifs:  TF,  target. (1) 
single input motif -  target gene has one TF, (2) multi-input motif – target gene has multiple TFs, 
(3) feed-forward loop – leading TF (TF1) regulates an intermediate TF (TF2) and both regulate 
the target gene, (4) autoregulation – TF targets itself, (5) multi-component loop – two TFs 
regulate each other, and (6) regulator chain – set of TFs regulate each other in series. (B) 
Schematic of the four gene expression relationships: (1) correlated (ie co-expressed - genes have 
similar profiles), (2) time-shifted  (genes have similar profiles, but one is delayed with respect to 
the other in the cell cycle), (3) inverted  (genes have opposing profiles), and (4) inverted time-
shifted. The local clustering method uses a dynamic programming algorithm to align the 
expression profiles of the genes in question. From the alignment, the method is able to determine 
which of the four types the relationship is and assign a clustering score measuring the 
significance of the relationship; for the Cho et al dataset, a score of 13 or above corresponds to a 
relationship significant to p = 2.7×10-3 (see supplementary materials). 
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[Page 39-10] 
4. Examples of TF-target relationships 
In Fig. 3 we examine specific regulatory networks.  

4.1 SIM: ndd1 network 

Ndd1, a cell cycle regulator during S and G2/M transition22,23, acts as the sole regulating TF for 
MCM21, kinetochore protein required for normal cell growth from late S to early M phase24,25, 
and STB5, another transcription factor26. All three genes display cell cycle periodicity. NDD1 
peaks early in S and sustains high expression until G2. The targets are co-expressed and time-
shifted with respect to NDD1 by one time-point, peaking later in S.  
 
4.2 MIM: forkhead network 

Ndd1 is recruited to G2/M-transition-specific promoters by Fkh1 and Fkh2, two forkhead 
transcription activators22,23,27. Collectively, these three TFs regulate Dbf2, a kinase needed for 
cell-cycle regulation28, and HDR1 (function unknown). The expression profiles of the three TFs 
are only loosely correlated and peak at different points from early S to late G2. The targets are 
time-shifted with respect to FKH1 by two time-points and peak at the G2/M transition. The local 
clustering scores show that their expression profiles are better correlated than in the preceding 
SIM example (Supplementary Table 3).   
 
4.3 FFL: mbp1/swi4 network 

In a feed-forward-loop, Mbp1 (a cell-cycle regulator controlling DNA replication and repair6,29) 
is the leading TF, Swi4 (a cell-cycle regulator controlling cell-wall and membrane synthesis6,29) 
is the intermediate TF, and SPT21 (a TF involved in histone expression30) and YML102C-A 
(function unknown) are the target genes. The profiles of the intermediate TF and target genes are 
correlated and peak sharply in G1. In contrast, the leading TF displays an inverted relationship, 
which highlights its involvement as a target repressor. (Previous studies have shown Mbp1 acts 
as an activator for ~50% its targets during the G1/S transition and as a repressor for ~10% of its 
targets later in the cycle6,7,29.) 
 
[Figure 3 caption] 
Figure 3. Expression profiles of example regulatory networks during the cell cycle.   TF, 

  target. | | indicates a time-shift relationship. The inset describes the TF and target genes 
involved in the example. (A) Single input motif, (B) multi-input motif, and (C) feed-forward 
loop. 
 
[Supplementary materials] 
Determination of the expression relationships using local clustering method (excerpt from 
Jiang et al, JMB, 314:1053-1066) 
“We use a degenerate dynamical programming algorithm to find time-shifted and inverted 
correlations between expression profiles. The algorithm does not allow gaps between 
consecutive time points in the current version. However, there are some obvious extensions, 
which we explore later in the discussion section. 
 … 
Supplementary Figure 2. “Three examples showing simultaneous (A), time-delayed (B), and 
inverted (C) relationships in the expression profiles. Note there are only 8 time points for each 
profile, while in the real yeast cell-cycle data there are 17 time points. Also, the expression ratio 
is not normalized, whereas in the real data each profile is normalized so that the averaged 
expression ratio is 0 and the standard deviation is 1. The thick segments of the expression 
profiles are the matched part. (D) The corresponding matrix E for the expression profile shown 
in (A). The corresponding matrix D

 
is not shown because in this case the match score (the 

maximal score) is from E and not D. The numbers outside the border of the matrix are the 
expression ratio shown in (A). The black cell contains the overall match score S for these two 
expression profiles, and the light gray cells indicate the path of the optimal alignment between 
the expression profiles. The path starts from the match score and ends at the first encountered 0. 
(E) The corresponding matrix E for the expression profile shown in (B). Note the time-shifted 
relationship and how the length of the overall alignment can be shorter than 8 positions. (F) The 
corresponding matrix D for the expression profiles shown in (C). The matrix E is not shown 
because the best match score is not from this matrix in this case.” 
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-- Editor-6 – Explanation of FFL -- 
Reviewer 
Comment 

You need to expand on what a “feed forward loop” is. Is it 
where transcription factor R1 regulates R2 and then both 
R1 and R2 bind us of the gene of interest? 

Author 
Response 

Yes, a “feed forward loop” is where R1 regulates R2 and both of 
them together regulate the target.  
1. In order to make it clear what each network motif is, we 

added Figure 1A to show a schematic diagram for each motif. 
We also explained what they are in detail in the figure 
caption. 

2. For the three main motifs (SIM, MIM, and FFL) that are the 
focus of the manuscript, we also showed three real biological 
examples in Figure 3 to further illustrate their topological and 
biological meanings. 

3. For each example, we added a diagram as an inset to show 
what the motif is and why the example falls into this category. 

Excerpt From 
Revised Manuscript 

[Page 3] 
1.1 TF-target regulatory network  
We compiled a yeast regulation dataset from merging the results of genetic, biochemical and 
ChIp-chip experiments4,5,7,10. It contains 7,419 TF-target pairs from 180 TFs and 3,474 target 
genes (Table 1). Regulatory networks can be simplified into six basic motifs (Fig. 1a)9,10. Here, 
we focus on the single input motif (SIM), multi-input motif (MIM) and feed-forward loop (FFL) 
as the data for the remaining motifs are too sparse. 
 
[Figure 1 caption] 
Figure 1. Schematic representations of transcription regulatory motifs and temporal gene 
expression relationships. (A) Depiction of the six basic regulatory motifs:  TF,  target. (1) 
single input motif -  target gene has one TF, (2) multi-input motif – target gene has multiple TFs, 
(3) feed-forward loop – leading TF (TF1) regulates an intermediate TF (TF2) and both regulate 
the target gene, (4) autoregulation – TF targets itself, (5) multi-component loop – two TFs 
regulate each other, and (6) regulator chain – set of TFs regulate each other in series. (B) 
Schematic of the four gene expression relationships: (1) correlated (ie co-expressed - genes have 
similar profiles), (2) time-shifted  (genes have similar profiles, but one is delayed with respect to 
the other in the cell cycle), (3) inverted  (genes have opposing profiles), and (4) inverted time-
shifted. The local clustering method uses a dynamic programming algorithm to align the 
expression profiles of the genes in question. From the alignment, the method is able to determine 
which of the four types the relationship is and assign a clustering score measuring the 
significance of the relationship; for the Cho et al dataset, a score of 13 or above corresponds to a 
relationship significant to p = 2.7×10-3 (see supplementary materials). 
 
[Figure 3 caption] 
Figure 3. Expression profiles of example regulatory networks during the cell cycle.   TF, 

  target. | | indicates a time-shift relationship. The inset describes the TF and target genes 
involved in the example. (A) Single input motif, (B) multi-input motif, and (C) feed-forward 
loop. 
 

 

-- Editor-7 – Question on expression level -- 
Reviewer 
Comment 

P3. you talk about co-expressed. Does it depend on how 
highly expressed-where the “co” is likely to be more 
reliable-rather than transcripts which just go up a bit? 

Author 
Response 

The editor is right in that when the gene’s expression level is too 
low, the measurements become relatively noisy and therefore not 
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suitable for the analysis. In our analysis, we did not select highly-
expressed genes explicitly. But, we believe that genes with very 
low expression levels are excluded from our analysis implicitly 
during our calculation and our conclusions are not affected by the 
gene’s expression level. There are four main reasons: 
1. All the microarray experiments (both Affymetrix and cDNA 

microarray) have their own detection mechanisms. The 
suspicious spots will be flagged and excluded from the final 
results. Furthermore, using the same set of the Affymetrix 
chips, Wodicka et al (Nature Biotechnology, 15:1359-1367) 
found that 20% yeast genes are expressed in a very low level 
(< 0.1 copy per cell). In our analysis, however, 95% genes 
that have significant relationships with other genes are highly 
expressed (> 0.1 copy per cell). This confirms that our 
analysis is based on the true biological signal, rather than the 
noise of the measurements. 

2. It is well known that different genes have quite different 
expression levels. When a transcription factor activates its 
targets in the cell, the expression of these targets will all 
increase, but to different individual levels. Therefore, it is the 
relative shape, not the absolute level, of the expression 
profile that is more interesting and more related to our 
analysis. 

3. Using the local clustering method, the clustering score 
between a pair of genes are essentially the sum of the 
products of their normalized expression levels at each time 
point. Therefore, only highly-expressed genes with significant 
changes in the expression levels could have a local clustering 
score higher than the cut-off (13) used in the analysis.  

4. Using Mann-Whitney U-test (i.e. non-parametric T-test), the 
average expression level of the genes included in the 
analysis is indeed much higher (P-value < 1e-16) than others.

 
 

-- Editor-8 – Explanation of LOD -- 
Reviewer 
Comment 

P4. The log odds ratio needs explaining. Is it the log of 
the ratio of co-expression of two genes connected by 
having (say) MIM-to well what? A pair of genes chosen at 
random? The average co-expression of possible pairs of 
genes? And what is the category “All” in the x axis of 
(new) fig 2? In panel 1a “All” seems to be about 2, this 
means that something is 100 times (if using log10 ) as 
likely as what to occur by what (chance?). How come no 
enrichment has a LOD~1 (2nd par) surely if the odds ratio 
is 1 then LOD is 0? 

Author 
Response 

1. In general, the LOD values are calculated by the formula: 
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( | )LOD ln[ ]
( )

P relationship regulation
P relationship

=  

where P(relationship | regulation) is the possibility for gene 
pairs with certain regulatory relationships to have a specific 
expression or functional relationship. P(relationship) is the 
possibility for gene pairs randomly chosen from the dataset to 
have the corresponding expression or functional relationship. 
Because the LOD values are the log of the odds ratios, 
positive LOD values mean that the possibility is higher that 
random expectation, and vice versa. Detailed description of 
how to calculate each individual LOD value is given in the 
supplementary materials. So, in Figure 2A, the LOD value of 
bar “MIM” is the log of the ratio of co-expression of two genes 
co-regulated by the same MIM to that of “a pair of genes 
chosen at random” (the editor’s first guess is correct).  

2. The category “All” includes all gene pairs co-regulated by at 
least one common transcription factor. For instance, if gene A 
is regulated by regulators 1 & 2 and gene B is regulated by 
regulators 2 & 3, the gene pair “A-B” won’t be included in the 
category “MIM”, because they belong to two different MIMs. 
However, the “A-B” pair is included in the category “All”, 
because they share one common regulator – regulator 2. 

3. We defined the LOD value here to be the natural logarithm of 
the odds ratio. So, in Figure 2A, “All” is 1.3, which means that 
the probability for the gene pairs sharing at least one 
common regulator to be co-expressed is about four (e1.3 ~ 4) 
times higher than that of the gene pairs chosen at random. 

4. The editor is absolutely right. No enrichment should have a 
LOD value of 0. The probability for gene pairs co-regulated 
by the same FFLs to have the same function is still 
significantly higher than gene pairs chosen at random. 
However, compared with other categories (especially “SIM”), 
the functional enrichment of FFL is the lowest. This is what 
we meant by saying “FFL motifs do not display much 
functional enrichment (LOD ~ 1).” We carefully revised this 
sentence to remove any ambiguity. 

Excerpt From 
Revised Manuscript 

[Page 3-4] 
1.3 Statistical formalism 
 
We use several statistics to quantify the significance of our observations. The p-value is the 
probability that an observation (eg co-expression of target genes) would be made by chance, and 
is calculated using the cumulative binomial distribution: 

!P( ) [ ] (1 )
!( )!

o

N
c N c

o
c c

Nc c p p
N N c

−

=

≥ = −
−∑  

N is the total number of possible gene pairs in the data, co is the number of observed pairs with a 
specific relationship (ie from expression or function), and p is the probability of finding a gene 
pair with the same relationship randomly (picking from the entire genome). 
 
The log odds ratio (LOD) is the enrichment a particular relationship in the presence of regulation 
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with respect to random expectation for the occurrence of the relationship:  
( | )LOD ln[ ]

( )
P relationship regulation

P relationship
=  

P(relationship | regulation) is the probability for gene pairs with certain regulatory relationship 
(eg TF=>target) to have a specific expression or functional relationship (eg correlated 
expression). P(relationship) is the probability for randomly selected gene pairs to have the same 
expression or functional relationship.  When we report this together with p-values, we use the 
following notation {log p-value,LOD value}. 
 
[Page 4] 
Interestingly, FFL motifs display the smallest enrichment {-11,1.5}. 
 
[Supplementary materials] 
Calculation of the LOD values 
Figure 2A 

( - | - )
LOD ln[ ]

( - )

P co exp co reg

P co exp
=  

where P(co-exp | co-reg) is the possibility for genes co-regulated by a certain motif to be co-
expressed (i.e. correlated), which is calculated as the percentage of correlated pairs between all 
possible pairs of co-regulated genes. P(co-exp) is the possibility for gene pairs randomly chosen 
from the dataset to be co-expressed, which is calculated as the percentage of correlated pairs 
between all possible gene pairs in Cho’s dataset.  

Figure 2B 

( | )
LOD ln[ ]

( )

P same function co reg

P same function

− −
=

−
 

where P(same-function | co-reg) is the possibility for gene pairs co-regulated by a certain motifs 
to have the same functions. P(same-function) is the possibility for gene pairs randomly chosen 
from the dataset to have the same functions. 
… 

Table 1 

( - | - )
LOD ln[ ]

( - )

P co exp co reg

P co exp
=  

where all the calculations are very similar to those in Figure 2A, except that the expression 
relationships between gene pairs are determined using Pearson correlation coefficient in 
different microarray datasets. 
All the possibilities in the analysis are calculated in the same way as in Figure 2A. 

 

-- Editor-9 – Explanation of FFL -- 
Reviewer 
Comment 

You need to expand on what a “feed forward loop” is. Is it 
where transcription factor R1 regulates R2 and then both 
R1 and R2 bind us of the gene of interest? 

Author 
Response 

 Please refer to response Editor-6. 

 
 

-- Ref1-1 – Other microarray datasets -- 
Reviewer 
Comment 

The authors used only expression data for the yeast cell 
cycle. I see no reason why it should be so. For example, 
it is well known that some regulators in yeast are 
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activated during sporulation, under stressful conditions, 
etc … Therefore, using only one expression dataset reduce 
the possibility to find positive expression correlation 
between regulator and their target genes. 

Author 
Response 

Please refer to response Editor-3. 

 

-- Ref1-2 – Explanation of local clustering method -- 
Reviewer 
Comment 

The authors should better explain the biological 
implication of concepts like co-expression, inverted and 
time shifted profiles. After all, general readers might be 
unfamiliar with their JMB paper on the subject. 

Author 
Response 

1. The goal of this paper is to discover the biological meanings 
of these expression relationships within the regulatory 
networks. After careful analysis, we were able to show that (i) 
co-regulated target genes tend to be co-expressed; (ii) The 
regulators show delayed relationships with their targets, 
although the enrichment is not very clear. This is summarized 
in “conclusion” section. 

2. We showed the real expression profiles of the regulators and 
their targets within three different motifs in Figure 3, and 
discussed in detail the biological implication of the expression 
relationships in the context of the different regulatory 
relationships. 

3. Please refer to response Editor-5. 
Excerpt From 
Revised Manuscript 

[The changes are the same as in response Editor-5.] 

 

-- Ref1-3 – Number of connections with different regulatory 
modes -- 

Reviewer 
Comment 

Can the authors provide a rough estimate on the number of 
positive/negative regulatory connections? Does it happen 
that a single regulatory gene activates one gene but 
represses another? 

Author 
Response 

1. There are 144 positive regulatory connections; 
2. There are 79 negative regulatory connections; 
3. 18 regulators activate some of their targets but repress 

others; 
4. We also surveyed the number of positive/negative regulatory 

connections within different motifs. The results are recorded 
in Table 1. 

Excerpt From 
Revised Manuscript 

[Table 1] 
Table 1. Summary of transcription regulatory network dataset. 
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motifs† SIM MIM FFL ALL

# TFs 119 118 97 188
#  targets 1754 986 511 3416

Total 1754 2781 1523 7419

Activation‡ 37 50 19 - 33§ 144

Repression‡ 12 34 23 - 10§ 79

Stress response 0.44* 3.55* 0.59 0.88*
Sporulation 0.03 0.25 0.08 -0.05
Diauxic shift 0.11* 1.78* 0.30* 0.30*
DNA damage 1.24* 4.87* 1.26* 2.14*

Cell Cycle 
(Spellman et al.) 0.37* 2.09* 1.62* 0.52*

" " (Cho et al) 0.29* 2.79* 1.35* 0.93*
" " (Zhu et al) 0.22* 2.50* 0.91* 0.64*
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* LOD values with P-value smaller than 1e-05 (see supplementary Table 1) 
† The abbreviation for the motifs is the same as in the caption of Figure 1A. ALL, All the TF-
target pairs. There are 3 smaller motifs: Auto, 22 targets, MCL, 31 targets, RC, 119 targets. The 
random expectation for the number of targets is 6130, the number of yeast genes. The random 
expectation for the number of gene pairs in yeast is 18785385 = 6130(6129)/2, which is obtained 
by counting all pairs between yeast genes.  
‡ Positive expression relationships (correlated and time-shifted) are considered as activation 
signals, while negative relationships (inverted and inverted time-shifted) are considered as 
repression signals. Overall, 18 regulators activate some of their targets but repress others. Note 
this is distinct from the number of activator relations determined experimentally (as described in 
§2.4 and §3.2) 
§ We show the number of relations for FFL:TF1 and FFL: TF2. 
£ Log odds ratios for target gene pairs having correlated profiles in different expression datasets. 
The local clustering method cannot be applied, so expression correlation is measured using the 
Pearson correlation coefficient. Co-expressed gene pairs are those in the top 1% of largest 
correlation coefficients. 

 

-- Ref1-4 – Number of AND gates -- 
Reviewer 
Comment 

Would it be possible to investigate the number of AND 
gates (two transcription factors are needed simultaneously 
to activate a single target gene)? 

Author 
Response 

1. Determined by the expression data, there are 3 AND gates; 
2. We cut out this section as we felt it was too complex to 

describe in detail.  
 

-- Ref1-5 – Number of different types of FFLs -- 
Reviewer 
Comment 

The Lee et al paper gives an estimate on the number but 
not the type of feedback loops. What is the fraction of 
positive and negative feedback loops, and why? 

Author 
Response 

1. In the Lee et al paper, they discussed in detail feedforward 
loops (FFL), not feedback loops. Therefore, there might be a 
typo in the referee’s comment.  

2. We investigated the number of different types of FFLs 
determined from the expression data and added a paragraph 
together with supplementary Table 2 to discuss the results; 

3. We also summarized the number of different types of 
regulatory connections between R1’s and their targets and 
those between R2’s and their targets. Table 1b is added in to 
show the results; 
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Excerpt From 
Revised Manuscript 

[Page 7] 
FFL motifs present the most interesting and complex relationships. The leading TFs in the motif 
(denoted TF1) generally have negative relationships with the target genes -- i.e. inverted {-
2,0.82} or inverted time-shifted {-10,2.0}. The intermediate TFs (TF2) exhibit all four types of 
relationships; The most common arrangement (55% of FFLs, supplementary table 2) is where 
the leading TF has a negative relationship with the target and the intermediate TF has a positive 
one (ie correlated or time-shifted). (Note, however, there are only 11 FFLs for which both TF1 
and TF2 have significant expression relationships with the targets.) 
 
[Supplementary Table 2] 
Supplementary Table 2. Number of FFLs with different regulatory relationships between 
the regulators and their targets determined from the expression data 

Type of FFLs 

TF1-target TF2-target 
# of FFLs 

P* P 3 

P N 2 

N P 6 

N N 0 
* P: positive relationships between the TFs and their targets; N: negative relationships between 
the TFs and their targets. 
 
[Other changes are the same as in response Ref1-3] 

 

-- Ref1-6 – Another perspective on the poor co-expression of 
genes co-regulated by SIMs -- 

Reviewer 
Comment 

The authors claim that co-expression is more tightly 
regulated when more than one transcription factors (TF) 
are involved. But what if the yeast genome contains other, 
yet unidentified TFs. In this case, single input motifs of 
two genes would be part of a multiple - possibly only 
partially overlapping – motifs. The authors should at 
least mention this problem. 

Author 
Response 

We agree with the referee and modified the text accordingly. 

Excerpt From 
Revised Manuscript 

[Page 5] 
The differences in enrichment (ie LOD values) indicate that expression is much more tightly 
regulated when multiple TFs are involved. However, with >100 yeast transcription factors yet to 
be investigated18, unidentified TF-target relationships will probably alter the classification of 
SIM target genes to MIM or FFL networks in the future. 

 

-- Ref2-1 – More concise title -- 
Reviewer 
Comment 

The title could be made more concise as follows: 
'Correlation of gene expression in regulatory network 
motifs' 

Author 
Response 

We've changed the title to make it more concise. The title now is:  
Genome-wide analysis of gene expression relationships in 
transcriptional regulatory networks 

Excerpt From 
Revised Manuscript 

[Title] 
Genome-wide analysis of gene expression relationships in transcriptional regulatory 
networks 
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-- Ref2-2 – More regulatory data -- 
Reviewer 
Comment 

These network motifs were found by analysis of ChIp-chip 
experiments described Lee et al. (2002). It would make 
sense to expand the data set to all known transcriptional 
regulatory relationships, such as those in the TRANSFAC 
database. 

Author 
Response 

The referee made an excellent point here. Now, we added in not 
only the TRANSFAC database, but also ChIp-chip experiments 
by Horak et al. (2002) and transcriptional regulatory data by 
Guelzim et al. (2002). Therefore, our calculations have taken into 
account all available transcriptional regulatory data, which consist 
of 180 transcription factors and 3474 genes (> half of yeast 
genome) in total. Compared with our previous dataset (106 
regulators and 2416 genes), new information is more than half. 
And, the results remain the same.  

Excerpt From 
Revised Manuscript 

[Abstract] 
From merging a number of data sources, we created an extensive map of the transcriptional 
regulatory network in yeast, comprising 7419 interactions connecting 180 transcription factors 
(TFs) with their target genes. We integrated this network with gene-expression data, relating the 
expression profiles of TFs and target genes. We found that genes targeted by the same TF tend 
to be co-expressed, with the degree of co-expression increasing if genes share more than one TF. 
Moreover, shared targets of a TF tend to have similar cellular functions. In contrast, the 
expression relationships between the TFs and their targets are much more complicated, often 
exhibiting time-shifted or inverted behavior. 
 
[Page 3] 
1.1 TF-target regulatory network  
We compiled a yeast regulation dataset from merging the results of genetic, biochemical and 
ChIp-chip experiments4,5,7,10. It contains 7,419 TF-target pairs from 180 TFs and 3,474 target 
genes (Table 1). Regulatory networks can be simplified into six basic motifs (Fig. 1a)9,10. Here, 
we focus on the single input motif (SIM), multi-input motif (MIM) and feed-forward loop (FFL) 
as the data for the remaining motifs are too sparse. 

 

-- Ref2-3 – Multiple parallel FFLs? -- 
Reviewer 
Comment 

In section 1., it says target genes part of a feed forward 
loop also display significant correlation. Is this 
referring to a situation where multiple genes are 
regulated by the same specific (R2) and general (R1) 
transcription factor, in other words multiple parallel 
feed forward loops? 

Author 
Response 

1. Yes, they are multiple parallel feed forward loops. 
2. Please refer to response Editor-6. 

Excerpt From 
Revised Manuscript 

[The changes are the same as in response Editor-6] 

 

-- Ref2-4 – Summary table -- 
Reviewer 
Comment 

A table giving the number of SIMs, MIMs and FFLs studied, 
and the percentages that have the specific features 
described, would be useful. 

Author 
Response 

We agree with the referee and changed the manuscript 
accordingly. 
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1. We summarized the number of all six motifs and other 
statistics on the yeast regulatory networks in Table 1. 

2. We added the specific LOD values and P values for each 
feature in the main text. 

3. We added the specific percentages for most features in the 
main text. The percentage of each feature can also be 
calculated easily from its LOD value. 

Excerpt From 
Revised Manuscript 

[Table 1] 
Table 1. Summary of transcription regulatory network dataset. 

motifs† SIM MIM FFL ALL

# TFs 119 118 97 188
#  targets 1754 986 511 3416

Total 1754 2781 1523 7419

Activation‡ 37 50 19 - 33§ 144

Repression‡ 12 34 23 - 10§ 79

Stress response 0.44* 3.55* 0.59 0.88*
Sporulation 0.03 0.25 0.08 -0.05
Diauxic shift 0.11* 1.78* 0.30* 0.30*
DNA damage 1.24* 4.87* 1.26* 2.14*

Cell Cycle 
(Spellman et al.) 0.37* 2.09* 1.62* 0.52*

" " (Cho et al) 0.29* 2.79* 1.35* 0.93*
" " (Zhu et al) 0.22* 2.50* 0.91* 0.64*
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* LOD values with P-value smaller than 1e-05 (see supplementary Table 1) 
† The abbreviation for the motifs is the same as in the caption of Figure 1A. ALL, All the TF-
target pairs. There are 3 smaller motifs: Auto, 22 targets, MCL, 31 targets, RC, 119 targets. The 
random expectation for the number of targets is 6130, the number of yeast genes. The random 
expectation for the number of gene pairs in yeast is 18785385 = 6130(6129)/2, which is obtained 
by counting all pairs between yeast genes.  
‡ Positive expression relationships (correlated and time-shifted) are considered as activation 
signals, while negative relationships (inverted and inverted time-shifted) are considered as 
repression signals. Overall, 18 regulators activate some of their targets but repress others. Note 
this is distinct from the number of activator relations determined experimentally (as described in 
§2.4 and §3.2) 
§ We show the number of relations for FFL:TF1 and FFL: TF2. 
£ Log odds ratios for target gene pairs having correlated profiles in different expression datasets. 
The local clustering method cannot be applied, so expression correlation is measured using the 
Pearson correlation coefficient. Co-expressed gene pairs are those in the top 1% of largest 
correlation coefficients. 
 
[Page 5] 
First, we investigate expression relationships between genes targeted by the same TFs. Overall, 
3.3% of target gene pairs are co-expressed, which is four times greater than random expectation 
{-12,1.3} (Fig. 2a, bar-ALL). We detect few inverted or time-shifted relationships (§2.4).  
 
The level of correlation is very dependent on the type of regulatory network motif (Fig. 2a). 
Genes targeted by individual TFs (SIM) are not strongly correlated: just 1.3% of target pairs are 
co-expressed though this is significantly higher than expected {-11,0.29}. Correlation is stronger 
for genes targeted by multiple, common TFs: 24.4% of MIM target pairs {-12,3.2} and 5.0% of 
FFL targets exhibit co-expression {-12,1.6}. Similar results are observed for other expression 
datasets3,13-17 (Table 1). 

 

-- Ref2-5.1 – Explanation of AND-gate -- 
Reviewer 
Comment 

In section 3., the behaviour of feed forward loops has to 
be clarified. First, the authors must explain what an AND-
gate is. 

Author We cut out this section as we felt it was too complex to describe 
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Response in detail. 
 

-- Ref2-5.2 – Inhibition vs. Activation -- 
Reviewer 
Comment 

Next, they should specify the different combinations of 
inhibition and activation that occur in the (mostly 
coherent?) FFLs.  

Author 
Response 

1. We added in Table 1 to summarize the number of different 
combinations of inhibition and activation that occur in all three 
motifs we analyzed; 

2. Furthermore, we analyzed the expression relationships 
between the known activators (or repressors) and their 
targets. These known activation and inhibition regulations are 
determined by genetic or biochemical methods. We found 
that (1) Co-expression of co-activated gene pairs is much 
better than that of co-repressed gene pairs; (2) The 
probability of co-activated gene pairs having negative 
expression relationships is lower than random expectation; 
(3) Activators tend to have correlated relationships with their 
targets; while inhibitors tend to have inverted relationships 
with their targets. 

Excerpt From 
Revised Manuscript 

[Table 1] 
Table 1. Summary of transcription regulatory network dataset. 

motifs† SIM MIM FFL ALL

# TFs 119 118 97 188
#  targets 1754 986 511 3416

Total 1754 2781 1523 7419

Activation‡ 37 50 19 - 33§ 144

Repression‡ 12 34 23 - 10§ 79

Stress response 0.44* 3.55* 0.59 0.88*
Sporulation 0.03 0.25 0.08 -0.05
Diauxic shift 0.11* 1.78* 0.30* 0.30*
DNA damage 1.24* 4.87* 1.26* 2.14*

Cell Cycle 
(Spellman et al.) 0.37* 2.09* 1.62* 0.52*

" " (Cho et al) 0.29* 2.79* 1.35* 0.93*
" " (Zhu et al) 0.22* 2.50* 0.91* 0.64*
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* LOD values with P-value smaller than 1e-05 (see supplementary Table 1) 
† The abbreviation for the motifs is the same as in the caption of Figure 1A. ALL, All the TF-
target pairs. There are 3 smaller motifs: Auto, 22 targets, MCL, 31 targets, RC, 119 targets. The 
random expectation for the number of targets is 6130, the number of yeast genes. The random 
expectation for the number of gene pairs in yeast is 18785385 = 6130(6129)/2, which is obtained 
by counting all pairs between yeast genes.  
‡ Positive expression relationships (correlated and time-shifted) are considered as activation 
signals, while negative relationships (inverted and inverted time-shifted) are considered as 
repression signals. Overall, 18 regulators activate some of their targets but repress others. Note 
this is distinct from the number of activator relations determined experimentally (as described in 
§2.4 and §3.2) 
§ We show the number of relations for FFL:TF1 and FFL: TF2. 
£ Log odds ratios for target gene pairs having correlated profiles in different expression datasets. 
The local clustering method cannot be applied, so expression correlation is measured using the 
Pearson correlation coefficient. Co-expressed gene pairs are those in the top 1% of largest 
correlation coefficients. 
[Page 7-8] 

3.2 Relation to Regulatory-signal Type  
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As in §2.4, we can measure the TF-target expression relationships when the type of regulatory 
signals is taken into account. Though the data is too sparse to make statistically sound 
conclusions, we try to make some observations. Unsurprisingly, activators are co-expressed with 
their targets {-2,0.63} (Fig. 2f), and comprise over 50% of TF-target pairs with significant 
expression relationships. We also find that repressors exhibit inverted {-2,1.1} and inverted 
time-shifted relationships {-2,1.2}. There are unexpected results too. Activators display 
significant inverted time-shifted relationships {-6,1.8} and repressors show (normal) time-
shifted relationships. There are several reasons for this: A sizeable proportion of TFs (15%) act 
both as activators and repressors, in some cases for the same target. Furthermore, the combined 
effect of multiple TFs in MIM and FFL motifs can have an unpredictable effect on target 
expression. 

 

-- Ref2-5.3 – Number of different types of FFLs -- 
Reviewer 
Comment 

Then the number of FFLs for each combination could be 
given, as inferred by them from the expression data. 

Author 
Response 

Please refer to response Ref1-5. 

 

-- Ref2-5.4 – Examples of Motifs -- 
Reviewer 
Comment 

At the moment, all that is said is that there is often a 
direct correlation of the specific transcription factors, 
and an inverted time-shifted correlation with the general 
transcription factors for both the target and R2. If this 
is the most common type of FFL, then it would be nice to 
illustrate it with a specific example from their results. 

Author 
Response 

1. Yes, this is the most common type of FFL (i.e. R1 represses 
both R2 and the target. R2 activates the targets), despite the 
fact that the statistics are not very good; 

2. A specific example (Mbp1 represses the expression of SWI4 
and their targets; while the expression of SWI4 and the 
targets is highly correlated) is given in Figure 3C to illustrate 
the biological importance of our analysis; 

Excerpt From 
Revised Manuscript 

[Page 7] 
FFL motifs present the most interesting and complex relationships. The leading TFs in the motif 
(denoted TF1) generally have negative relationships with the target genes -- i.e. inverted {-
2,0.82} or inverted time-shifted {-10,2.0}. The intermediate TFs (TF2) exhibit all four types of 
relationships; The most common arrangement (55% of FFLs, supplementary table 2) is where 
the leading TF has a negative relationship with the target and the intermediate TF has a positive 
one (ie correlated or time-shifted). (Note, however, there are only 11 FFLs for which both TF1 
and TF2 have significant expression relationships with the targets.) 
 
[Page 9-10] 
4.3 FFL: mbp1/swi4 network 
In a feed-forward-loop, Mbp1 (a cell-cycle regulator controlling DNA replication and repair6,29) 
is the leading TF, Swi4 (a cell-cycle regulator controlling cell-wall and membrane synthesis6,29) 
is the intermediate TF, and SPT21 (a TF involved in histone expression30) and YML102C-A 
(function unknown) are the target genes. The profiles of the intermediate TF and target genes are 
correlated and peak sharply in G1. In contrast, the leading TF displays an inverted relationship, 
which highlights its involvement as a target repressor. (Previous studies have shown Mbp1 acts 
as an activator for ~50% its targets during the G1/S transition and as a repressor for ~10% of its 
targets later in the cycle6,7,29.) 
 
[Figure 3 caption] 
Figure 3. Expression profiles of example regulatory networks during the cell cycle.   TF, 
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  target. | | indicates a time-shift relationship. The inset describes the TF and target genes 
involved in the example. (A) Single input motif, (B) multi-input motif, and (C) feed-forward 
loop. 
 
[Supplementary Table 2] 
Supplementary Table 2. Number of FFLs with different regulatory relationships between 
the regulators and their targets determined from the expression data 

Type of FFLs 

TF1-target TF2-target 
# of FFLs 

P* P 3 

P N 2 

N P 6 

N N 0 
* P: positive relationships between the TFs and their targets; N: negative relationships between 
the TFs and their targets. 

 

-- Ref2-6 – Explanation of LODs -- 
Reviewer 
Comment 

Figure: there should be a more complete description of how 
the log odds values are calculated. 

Author 
Response 

Please refer to response Editor-8. 

 

-- Ref2-7 – Minor problems of format and language -- 
Reviewer 
Comment 

Details of references and wording should be attended to 
more carefully, for instance the Lee et al reference in 
the abstract, and 'developed in our lab' in the figure 
legend. 

Author 
Response 

We agree with the referee and revised our manuscript very 
carefully. Specifically, we removed the Lee et al reference in the 
abstract, and ‘developed in our lab’ in the figure caption. 

Excerpt From 
Revised Manuscript 

[Abstract] 
From merging a number of data sources, we created an extensive map of the transcriptional 
regulatory network in yeast, comprising 7419 interactions connecting 180 transcription factors 
(TFs) with their target genes. We integrated this network with gene-expression data, relating the 
expression profiles of TFs and target genes. We found that genes targeted by the same TF tend 
to be co-expressed, with the degree of co-expression increasing if genes share more than one TF. 
Moreover, shared targets of a TF tend to have similar cellular functions. In contrast, the 
expression relationships between the TFs and their targets are much more complicated, often 
exhibiting time-shifted or inverted behavior. 
 
[Figure 1 Caption] 
…(B) Schematic of the four gene expression relationships: (1) correlated (ie co-expressed - 
genes have similar profiles), (2) time-shifted  (genes have similar profiles, but one is delayed 
with respect to the other in the cell cycle), (3) inverted  (genes have opposing profiles), and (4) 
inverted time-shifted. The local clustering method uses a dynamic programming algorithm to 
align the expression profiles of the genes in question. From the alignment, the method is able to 
determine which of the four types the relationship is and assign a clustering score measuring the 
significance of the relationship; for the Cho et al dataset, a score of 13 or above corresponds to a 
relationship significant to p = 2.7×10-3 (see supplementary materials). 

 


