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Abstract 

 

Biological research is becoming increasingly database driven, motivated, in part, by the 

advent of large-scale functional genomics and proteomics experiments such as those 

comprehensively measuring gene expression. These provide a wealth of information on 

each of the thousands of proteins encoded by a genome. Consequently, a challenge in 

bioinformatics is integrating databases to connect this disparate information, and 

performing large-scale studies to collectively analyze many different data sets. This 

approach represents a paradigm shift away from traditional single-gene biology, and 

often involves statistical analyses focusing on the occurrence of particular features (e.g. 

folds, functions, interactions, pseudogenes, or localization) in a large population of 

proteins. Moreover, the explicit application of machine learning techniques can be used 

to discover trends and patterns in the underlying data. We give several examples of these 

in a genomic context: Clustering methods to organize microarray expression data, support 

vector machines to predict protein function, Bayesian networks to predict subcellular 

localization, and decision trees to optimize target selection for high-throughput 

proteomics. 
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Biological research is database-oriented 

 

Databases have defined the information structure of molecular biology for over a decade, 

archiving thousands of protein and nucleotide sequences and three-dimensional 

structures. As large-scale genomics and proteomics move to the forefront of biological 

research, the role of databases has become more significant than ever. The current 

landscape of biological databases includes large public archives, such as GenBank, 

DDBJ, and EMBL for nucleic acid sequences [1], PIR and SWISS-PROT for protein 

sequences [2], and the Protein Data Bank for three-dimensional protein structure 

coordinate sets [3]. Another source of sequence data is dbEST [4], a division of GenBank 

storing expressed sequence tags (ESTs) from cell lines, which provide information about 

gene expression in various tissues. Databases such as these have been steadily 

accumulating gene sequences and protein structures for more than a decade, which are 

submitted on a per-instance basis from disparate laboratories in the biological sciences 

community.  

 

In addition to these general biomolecular data repositories, specialized systems have been 

developed which extend its interpretation by providing a context for individual sequences 

and structures. The SCOP, CATH, and FSSP [5] databases classify proteins based on 

structural similarity, Pfam and ProtoMap [6] identify families of proteins based on 

sequence homology, while PartsList and GeneCensus [7] give dynamic reports on the 

occurrence of protein families in various genomes. Databases have also been developed 
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to provide comprehensive access to sequence, expression, and functional data for all the 

known genes of specific model organisms [8]. 

 

Integration of databases and large-scale surveys 

In addition to sequence and structure databases, many diverse experimental data sets have 

been compiled that focus on various aspects of protein function. However, these need to 

be related with other data in order to be placed in a useful context, as individual bits of 

information are relatively meaningless outside of this wider scope. For example, an 

experiment measuring high mRNA copy number for the human gene J00068 carries little 

intrinsic value until one associates this fact with the gene’s functional classification, 

learning that it codes for the protein actin, an abundant component of skeletal muscle. 

 

The scale of genomics research precludes the traditional single-molecule approach in 

biology, where all the experimental knowledge about a given protein could be obtained 

through reading the literature. Thus, integrative database analysis and data mining are 

essential aspects of modern biology, enabling the synthesis of large-scale portraits of 

genome function.  

 

In practice, data mining often takes the form of statistical surveys, in the sense of 

demographic censuses, of different populations of genes and proteins. The goal in this 

analysis is to identify certain outstanding features possessed by a given population. For 

instance, large-scale surveys have been used to characterize the features of pseudogenes 

(inactive protein-coding regions) in the worm genome [9], correlate the levels of protein 
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expression with subcellular localization [10], examine the relationship between protein 

structure with function [11-12], and measure the composition of protein folds in complete 

genomes [13-14]. Bioinformatics researchers conducting integrative database surveys 

face the challenge of merging genomics data from many different sources into a common 

framework. The development of standards allowing federated databases to interoperate is 

essential.  

 

Functional genomics and microarray technology 

 

With the introduction of complete genome sequences, much comprehensive functional 

analysis has been done on the proteins encoded by an organism's genome. The sequence 

determination phase of genomics offers only a fraction of the analytical possibilities. 

Many functional experiments can be performed using that data, and countless 

opportunities exist to relate those experimental results with other properties via 

integrative database analysis. 

 

Among the experimental techniques available for genome-wide analysis are gene 

disruption [15], two-hybrid studies [16], large-scale proteomics [17], silicone elastomer 

protein chips [18], serial analysis of gene expression (SAGE) [19], and various DNA 

microarray technologies. Of these, microarrays have become particularly popular due to 

the highly parallel nature of the experiments, and the inherent homogeneity of the data 

captured. Using array technologies, immobilized oligonucleotide fragments having 

known sequences are exposed to fluorescence-labeled DNA probes, and the signals 
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corresponding to hybridized fragments are scanned and quantified (Figure 1A). A number 

of these systems have been devised, allowing the simultaneous interrogation of thousands 

of genes in a single experiment. Due to the recent sequencing of complete genomes, 

laboratories are using these array technologies to generate expression data on a scale that 

most researchers would have considered nearly impossible just a few years ago. 

 

Microarray technologies include cDNA arrays [20] and high-density oligonucleotide 

systems, such as GeneChips [21] and intergenic DNA arrays [22]. Different approaches 

are designed to capture different types of information. GeneChips and cDNA arrays 

enable genome-wide expression monitoring by measuring mRNA copy number under 

various cellular conditions, compiling an expression profile for many genes at 

incremental time points. cDNA microarrays measure gene expression as the difference in 

signal strength between reverse-transcribed mRNA levels from cells under various 

conditions. This difference is given relative to a reference value, which yields a ratio for 

every target gene under investigation. Conversely, GeneChips measure the absolute 

expression levels of mRNA transcripts, in number of copies per cell.  

 

Intergenic DNA arrays are an emerging technology, involving the construction of high-

density oligonucleotide chips that are probed with DNA fragments captured via 

chromatin immunoprecipitation (sometimes referred to as ChIP chips). DNA-binding 

proteins, complexed with their cognate recognition sequences, are sequestered from cell 

extracts with antibody-bound beads. The DNA is then isolated and used to probe the 

array, hybridizing to elements containing complementary nucleotide sequences. In 
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experiments where transcription factor-bound DNA is used to interrogate a microarray 

containing intergenic sequences, sites of transcription factor binding can be identified 

across an entire genome [22]. Evidence of putative gene expression accumulates when 

both cDNA and ChIP-derived probes are hybridized to identical arrays, and comparisons 

are made between differential mRNA levels and upstream sites of transcription factor 

binding. Combined with existing expression analysis methods, this location data can be 

used to assemble a more comprehensive picture of large-scale genetic function. 

 

Machine learning approaches to genomic data analysis 

 

Unsupervised learning and clustering 

A general problem in data analysis is how to structure information into meaningful 

taxonomies or categories. This issue is of great importance when trying to infer 

relationships in diverse biological data sets. Statistical methods for finding trends and 

patterns in experimental results have played a large role in their interpretation. Principal 

component analysis (PCA) can be an effective method of identifying the most 

discriminating features in a data set. This technique usually involves finding two or three 

linear combinations of the original features that best summarize the types of variation in 

the data. If much of the variation is captured by these two or three most significant 

principal components, class membership of many data points can be observed. 

 

Several approaches to this problem employ unsupervised learning to find these 

categories; that is, no a priori information is required, and generally, no feedback is given 
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to the model to adjust its performance. Unsupervised learning enables pattern discovery 

by organizing data into clusters, using recursive partitioning methods. The k-means 

algorithm is a popular instance-based method of cluster analysis. The algorithm partitions 

data into a predetermined number of categories as instances are examined, according to a 

distance measure (e.g. Euclidean). Category centroids are fixed at random positions when 

the model is initialized, which can affect the clustering outcome.  

 

The self-organizing feature map (SOM) [23] consists of a neural network whose nodes 

move in relation to category membership. As with k-means, a distance measure is 

computed to determine the closest category centroid. Unlike k-means, this category is 

represented by a node with an associated weight vector. The weight vector of the 

matching node, along with those of neighboring nodes, are updated to more closely 

match the input vector. As data points are clustered and category centroids are updated, 

the positions of neighboring nodes move in relation to them. The number of network 

nodes which constitute this neighborhood typically decrease over time. 

 

While both algorithms require the number of clusters to be empirically chosen, the SOM 

algorithm overcomes some limitations of k-means by imposing global relationships 

between clusters, thereby improving interpretability. Like PCA, the SOM is capable of 

reducing high-dimensional data into a 1- or 2- dimensional representation. The algorithm 

produces a topology-preserving map, conserving the relationships among data points. 

Thus, although either method may be used to effectively partition the input space into 

clusters of similar data points, the SOM can also indicate relationships between clusters. 



 8

 

Supervised learning and classification 

Analysis of large data sets which contain diverse information often involves the explicit 

application of supervised learning. This generally involves dividing the data set features 

into two categories: predictors, or features in a data set that are relevant for learning; and 

the response variable, or property to be classified. Given the heterogeneous information 

presented by integrated bioinformatics databases, a number of potential correlations 

between predictors and response variables may be discovered, depending on the subset of 

features used and the classifications sought after. 

 

Machine learning can be applied to a wide variety of biological information, both to 

partition the data into categories and to classify previously unseen examples. Supervised 

learning is conducted in two phases, training and testing the classifier model. Using this 

strategy, the data set is divided into two mutually exclusive sets. The first set is used to 

train the model, where correct classifications/responses of the input examples are known 

a priori. This information is used to improve the performance of the model and reduce 

the classification error rate, a process which incrementally adjusts an n-dimensional 

hyperplane that serves to partition the data set into categories. Afterward, unseen 

instances in the test set are classified according to the partitioning established during the 

training phase. 

 

Classification performance vs. ease of interpretation 
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For biological research applications, interpretability of results is a key factor in selecting 

a particular machine learning method. By deciphering the mapping between points in 

feature space and learned categories, one can apply classification results in a practical 

context. The ability to decipher this mapping depends largely upon the internal 

representation used by a particular algorithm. For example, decision trees are quite useful 

in this respect, because rules can be extracted from the tree that discriminate amongst 

classes. Backpropagation neural networks, while useful classifiers, employ a numerical 

weight matrix to establish nonlinear mappings that can be difficult to interpret.  

 

Biological data mining applications 

 

Organizing microarray data 

Clustering algorithms are being applied to microarray data sets with increasing regularity; 

they are often incorporated into microarray image analysis software, and are therefore 

frequently used to visualize local and global relationships among hybridization signals 

captured by the array. Currently, hierarchical clustering is the most popular technique 

employed for microarray data analysis [24]. Hierarchical methods are based on building a 

distance matrix summarizing all the pairwise similarities between expression profiles, 

and then generating cluster trees (also called dendrograms) from this matrix. Genes 

which appear to be co-expressed at various time points are positioned close to one 

another in the tree, whose branch lengths represent the degree of similarity between 

expression profiles.  
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Agglomerative methods such as k-means and self-organizing maps have also been used to 

cluster microarray data. The SOM algorithm has been applied to identify cell 

differentiation patterns and distinguish between cancer cell types via array expression 

profiling [25]. Using both hierarchical and neighborhood analysis techniques, genes 

exhibiting similar mRNA levels tend to cluster together, revealing patterns in gene 

expression data (Figure 1B).  

 

While useful visualization tools, the analytical utility of either type of clustering approach 

is limited in terms of interpreting microarray results. These techniques serve to group 

data points based on changes in mRNA levels under various cellular conditions. 

Although cluster membership of related data points can indicate co-expression or co-

repression of the genes they represent, the existence of common regulatory pathways 

based on partitioning expression profiles remains speculative in the absence of external 

information. Additionally, there is no reason to believe that co-expressed genes are 

evolutionarily related as hierarchical ordering might imply. 

 

Partitioning phenotype data with multiple clustering techniques 

Where appropriate, clustering methods can be combined to establish a multi-tiered 

partitioning of a data set. An example of this approach is the tandem use of k-means 

clustering with hierarchical clustering as applied to genome-wide phenotypic analysis 

[15]. Yeast cells containing transposon insertions were sorted with the k-means algorithm 

based on growth conditions, to produce clusters of genes with similar phenotypes. The 

same data was then ordered hierarchically, producing trees of experimental assays, 
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clustering those which produce transformants with shared phenotypes (Figure 1C). Using 

this method, assays can be identified that are capable of selecting functionally related 

proteins. 

 

Classifying gene function with support vector machines 

An example of a supervised learning method applied to functional genomics data is the 

use of support vector machines (SVM) to classify yeast ORFs into several functional 

categories by correlating mRNA expression with prior knowledge of gene function [26]. 

The SVM maps an n-dimensional input space onto a higher-dimensional feature space, 

simultaneously transforming a nonlinear class boundary into a simple hyperplane. The 

new feature space is embodied as a set of nonlinear combinations of the original features. 

To apply the SVM for gene classification, a set of examples was assembled containing 

genes of known function, along with their corresponding microarray expression profiles. 

The SVM was then used to predict the functions of uncharacterized yeast ORFs based on 

the expression-to-function mapping established during training. Supervised learning 

techniques appear to be ideal for this type of functional classification of microarray 

targets, where sets of positive and negative examples can be compiled from genomic 

sequence annotations. 

 

Predicting subcellular localization with Bayes' rules 

Bioinformatics data mining often involves the aggregation of proteomic data from 

multiple sources, then using machine learning techniques to predict various 

macromolecular properties from these features. One such application of this strategy was 
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the assignment of thousands of proteins in the yeast genome to subcellular compartments 

[27]. In this study, gene expression levels from a number of SAGE, GeneChip and cDNA 

microarray experiments were accrued and cross-referenced with protein localization 

information from public databases. Each protein was first assigned a default probability 

of being localized to one of several compartments. These were then updated using a 

Bayesian system that incorporates a number of external features to arrive at probabilities 

for the localization of each protein (Figure 2A). Training the model on a set of examples 

for which this information is known made possible the prediction of the localization of 

unknown proteins. This analysis also enabled the elucidation of the relationships between 

expression and compartmental localization, with cytosolic proteins being highly 

expressed, and nuclear and membrane-related proteins exhibiting lower expression levels 

(Figure 2B). 

 

Using decision trees to optimize high-throughput proteomics 

The future of biological databases will likely include systems that are specifically 

designed to capture data in a format that facilitates retrospective analysis. This requires 

careful standardization of experimental parameters, thereby rendering the data amenable 

to subsequent computation. As discussed above, computing techniques are readily 

applied to microarray results, partially due to the inherent homogeneity of these data sets. 

Similarly, a goal in the fusion of databases with data mining applications is to standardize 

highly divergent data sets as much as possible, making them accessible to machine 

learning algorithms.  

 



 13

Recently, a combined approach was developed to facilitate distributed collaboration 

among many laboratories using a shared database system, and subsequently predict 

macromolecular properties from structural proteomics data via decision tree analysis 

[28]. Experimental parameters for protein cloning, purification, biophysical 

characterization, NMR, and X-ray crystallization were recorded in a database. These 

values were standardized across many laboratories and institutions, providing a common 

data format for retrospective analysis. Using the database to generate training sets for 

supervised learning, decision trees [29] were used to classify proteins as either soluble or 

insoluble, based on features of their amino acid sequences. Useful rules relating these 

features with protein solubility were then determined by tracing the paths through the 

decision trees (Figure 3). Protein solubility strongly influences whether a given protein is 

a feasible target for structure determination, so the ability to predict this property can be a 

valuable asset in the optimization of high-throughput projects. 

 

Conclusion 

 

As with biological sciences in general, the emphasis of computational biology has 

changed in recent years from the characterization of individual molecules to the analysis 

of genome-wide expression profiles and proteomics data sets. In contrast to traditional 

single-gene experimentation, comprehensive functional data sets are being produced, the 

scale of which has increased with the tandem sequencing of entire genomes and the 

advent of microarray technologies. An essential part of this work is the integration of a 

wide variety of experimental data, to assemble a larger picture of biological function and 
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frame pertinent information within a meaningful context. These composite data sets are 

conducive to extensive computational analysis, and present new opportunities for data 

mining. 

 

Machine learning is a useful tool for interpreting genomic information. Both supervised 

and unsupervised approaches can often be used to analyze the same kinds of data, 

depending on the desired result and the range of features available. While supervised 

learning can be used to classify examples according to a given response variable, 

unsupervised learning can aid in revealing previously unknown relationships without a 

priori information. However, meaningful clustering relationships are often difficult to 

discern. Although supervised models require an explicit training and testing regime, they 

can be used to predict the class of unknown examples based on previous learning by 

approximating a target function or discovering classification rules. This capability can 

allow investigators to interpret data classifications and potentially elucidate functional 

properties. 

 

Bioinformatics calls for a mosaic of computing techniques to facilitate the effective 

organization and interpretation of data generated by functional genomics projects. Large-

scale experiments, such as those performed with microarrays, yield large homogenous 

data sets that are well suited for computational analysis. Consequently, new types of 

databases have been created to handle this information [30]. These information systems 

are designed to provide management and web-based retrieval of microarray data. 

Currently under debate is whether data sets should be normalized as they are entered into 
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a particular system, and to what degree the details of experimental conditions should be 

recorded. While the microarray intensity values are well suited to relational table storage, 

experimental parameters vary widely across individual projects and currently defy 

uniform standardization. 

 

The data storage and analysis requirements of genomics research will likely promote the 

development of hybrid approaches that merge database design with computational 

methods. To facilitate this, it will be necessary to establish consistent formats for 

database interoperation, which will add greatly to the utility of experimental results in 

terms of potential data mining applications. 
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Figure 1. A) Scanned image of a cDNA microarray. To construct the array, DNA 

fragments of known sequence are immobilized to each array element. Messenger RNA 

transcripts from cell extracts are reverse-transcribed and labeled with the fluorophore 

cyanine-5, serving as hybridization probes. Total genomic DNA is labeled with cyanine-3 

and hybridized to all the array elements as a negative control. The two signals are 

observed separately with a laser using different excitation wavelengths (633 and 543nm, 

respectively), and the emissions are scanned and quantified via densitometry. Changes in 

gene expression are measured as the normalized ratios between mRNA level and 

background signal for each array element. The image is false-colored after scanning; 

here, genes that are up-regulated are shown in red, while genes that are down-regulated 

appear green. In this way, differential expression of thousands of genes can be quantified 

simultaneously. B) Hierarchical clustering techniques applied to microarray expression 

data, adapted from [24]. In this software display, microarray intensity values are depicted 

as colored blocks, where rows represent individual genes, and columns correspond to 

incremental time points when successive experiments were performed. Thus, each row 

constitutes an expression profile for a given gene. Red blocks indicate high mRNA 

levels, green blocks indicate low levels. The data was organized via hierarchical 

clustering to group genes with related expression profiles. C) Double-clustering of 

disruption phenotype data using k-means and hierarchical methods [15]. Both examples 

of hierarchical clustering use the Pearson coefficient to measure similarity between gene 

expression profiles. Given two normalized expression ratio profiles, the Pearson 

correlation coefficient is given by the dot product 
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where N is the number of elements represented by the profiles Xi and Xj. The 

measurement expression ratio profile x can be used to compute a Z-score from the 

normalized profile X with the following equation 
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where X(k) and x(k) are the kth components of the profiles X and x respectively, xavg is the 

average and σx is the standard deviation of values in x. The correlation coefficient matrix 

R can then be computed for a group of genes, where each matrix element Rij corresponds 

to the Pearson correlation coefficient between genes i and j. The average correlation 

coefficient Ravg is found by averaging the elements of R, including the diagonal. This 

statistic indicates the overall similarity of the expression profiles in a group of genes. 
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Figure 2. A) Bayesian system for predicting subcellular localization [27]. Charts depict 

the state vector for a protein m, representing the distribution of probabilities of protein m 

localizing to various subcellular compartments. Bar graphs illustrate the vectors for each 

feature considered. The prior state for a given protein is sequentially updated with Bayes’ 

rule using feature vectors that represent different attributes of the protein (e.g., NLS = 

nuclear localization signal sequence, GLY = glycosylation site). The predicted 

compartment for each protein is indicated by the probability distribution of the final state 

vector. B) Total predicted compartmental populations for the yeast genome. Estimates are 

calculated according to the distribution of a population vector, obtained by summing the 

probability state vectors of all the proteins considered. 
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Figure 3. Integrated database and machine learning system for optimizing high-

throughput proteomics, adapted from [28]. Experimental data for protein cloning, 

purification, biophysical characterization, and structure determination are uploaded from 

many distributed workstations to a central database server via Internet. These are stored 

as standardized values and used as features for data mining analyses. A number of 

response variables can be predicted in this manner. Decision trees were built with the 

C4.5 algorithm [29] to sort proteins based on solubility, using training sets compiled from 

the database. The model was trained using features derived from the protein sequences, 

such as the composition of various amino acid groups (e.g., aliphatic = C(AIGLV), 

aromatic = C(FWY)), secondary structure features, presence of hydrophobic regions, 

sequence complexity, etc. Ellipses represent the decision tree nodes, filled to indicate the 

number of soluble versus insoluble proteins at each vertex. These values appear to the 

right and left of each node, respectively. Rules that discriminate between classes were 

then extracted from decision trees by examining the paths from root to leaf nodes that 

lead to correct classifications. In this example, it was found that proteins without a 

hydrophobic stretch (Hphobe), with fewer than 25% of their residues in short low-

complexity sequences (CPLX(s)), and having less than 6% total leucine composition 

(C(L)) were likely to be soluble. 
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