
 

 

 

1

A Bayesian System  
Integrating Expression Data with Sequence 

Patterns for Localizing Proteins:  
Comprehensive Application to the Yeast Genome 

 
 
 
 
 
 
 

Amar Drawid 1 

 
& 
 

Mark Gerstein 1,2 * 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Departments of (1) Molecular Biophysics & Biochemistry 
and (2) Computer Science 

266 Whitney Avenue, Yale University 
PO Box 208114, New Haven, CT 06520 

(203) 432-6105, FAX (203) 432-5175 
Mark.Gerstein@yale.edu 

 
 

 
Version - Final 



 

 

 

2

ABSTRACT 
 
We develop a probabilistic system for predicting the subcellular localization of proteins 
and estimating the relative population of the various compartments in yeast.  Our system 
employs a Bayesian approach, updating a protein's probability of being in a compartment 
based on a diverse range of 30 features. These range from specific motifs (e.g. signal 
sequences or HDEL) to overall properties of a sequence (e.g. surface composition or 
isoelectric point) to whole-genome data (e.g. absolute mRNA expression levels or their 
fluctuations). The strength of our approach is the easy integration of many features, 
particularly the whole-genome expression data. We construct a training and testing set of 
~1300 yeast proteins with an experimentally known localization from merging, filtering, 
and standardizing the annotation in the MIPS, Swiss-Prot and YPD databases, and we 
achieve 75% accuracy on individual protein predictions using this dataset. Moreover, we 
are able to estimate the relative protein population of the various compartments without 
requiring a definite localization for every protein. This approach, which is based on an 
analogy to formalism in quantum mechanics, gives greater accuracy in determining 
relative compartment populations than that obtained by simply tallying the localization 
predictions for individual proteins (on the yeast proteins with known localization, 92% vs. 
74%). Our training and testing also highlights which of the 30 features are informative 
and which are redundant (19 being particularly useful). After developing our system, we 
apply it to the 4700 yeast proteins with currently unknown localization and estimate the 
relative population of the various compartments in the entire yeast genome. An unbiased 
prior is essential to this extrapolated estimate; for this, we use the MIPS localization 
catalogue, and adapt recent results on the localization of yeast proteins obtained by 
Snyder and colleagues using a minitransposon system. Our final localizations for all ~6000 
proteins in the yeast genome are available over the web at 
http://bioinfo.mbb.yale.edu/genome/localize. 
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INTRODUCTION 
 
The subcellular localization of a protein – the location or compartment it occupies within 
the cell – is one of its most basic features, and there is an involved machinery within the 
cell for sorting newly synthesized proteins and sending them to their final locations. 
However, with the advent of whole-genome sequencing, we are now in the position of 
knowing the sequences of many proteins without knowing their localization. 
 
Various methods have been employed in the past to predict the subcellular localization of 
proteins. 
 
Nakai and colleagues developed an integrated expert system to sort proteins into different 
compartments using sequentially applied “if-then” rules (Nakai & Kanehisa, 1991, 1992, 
1999). This eventually culminated in the PSORT system available over the web 
(psort.nibb.ac.jp). The rules were based on different signal sequences, cleavage sites, and 
the amino acid composition of individual proteins. At every node of the “if-then” tree, a 
protein was classified into a category (left or right descendent of the node) based on 
whether it satisfied a certain condition. One advantage of this process was that it could 
potentially mimic the actual physical decisions in the real sorting process. In further work, 
Nakai & Horton (1996) developed a more probabilistic approach, and they used a “k 
nearest neighbors” method to classify proteins according to the localization of their 
closest relatives (Nakai & Horton, 1997).  
 
Other integrated approaches to predicting subcellular localization focussing on sequence 
composition have been developed recently. Reinhardt & Hubbard (1998) used overall 
composition in conjunction with neural networks to classify proteins directly into 
different compartments. Andrade et al. (1998) concentrated on using the composition of 
surface residues to predict subcellular localization. 
 
There also has been much activity in predicting individual sorting signals -- e.g. signal 
sequences targeting proteins to the secretory pathway or mitochondrial targeting peptides.  
In particular, von Heijne and colleagues have worked extensively on identifying these, 
using neural networks and weight matrices (Claros et al., 1997; Nielsen et al., 1997, 
1999; Sipos & von Heijne, 1993; von Heijne, 1986, 1992; von Heijne et al., 1997). Their 
individual predictions for the various sorting sequences collectively form an impressive 
system for protein localization. However, it is not always clear how to combine the 
individual predictions into a unified framework. Related work on the identification of 
sorting sequences has been carried out in other laboratories (e.g. Claros & Vincens, 1996; 
Ladunga et al., 1991; Milanesi et al., 1996).  
 
In this paper, we describe an integrated system for localizing yeast proteins using 
Bayesian formalism. Initially, we assume that each protein has certain default 
probabilities of being in the various compartments. We sequentially update these "prior" 
expectations using Bayes' rules and a variety of features (clues) to obtain the final 
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probabilities that the protein has of being in the different compartments. By analogy to 
formalism in quantum mechanics, we also develop a way of estimating the overall 
compartment population (i.e. the total number of proteins in a compartment) without 
rigidly localizing proteins to a single compartment. We carefully construct various sets of 
yeast proteins of known localization based on merging, filtering, and standardizing the 
annotation in MIPS, Swiss-Prot and YPD, and we test and train our system against these 
sets. Finally, we apply our system in an "extrapolative" fashion to predict the subcellular 
location of the yeast proteins with currently unknown localization. This allows us to 
estimate tentatively the overall relative population of the various yeast compartments. 
Our work follows upon a recent structural and functional characterization we have done 
on the yeast genome (Gerstein, 1998a; Hegyi & Gerstein, 1999; Jansen & Gerstein, 
2000). 
 

OUR FORMALISM 

Compartments as States and the State Vector 
 
Our overall formalism is schematized in Figure 1a. In our actual results (next section), we 
assume that a protein exists in one of five “generalized” compartments. However, in this 
section we will use only three compartments to explain our formalism: cytoplasm (C), 
nucleus (N), and the extracellular environment and secretory pathway (E). We will 
discuss the localization L of protein m in terms of its probability state vector: 
 
 (L)mP

�

 = ( pm(C), pm(N), pm(E) ) (1) 
 
In this vector, each component gives the probability that a protein can be found in the 
corresponding subcellular compartment. This formalism is directly analogous to the state 
vector of an individual particle used in statistical quantum mechanics. 
 

Feature Vector 
 
A feature (or clue) is an observation made about a protein. For example, it could be a 
protein's absolute mRNA expression value, or its isoelectric point, or the fact that it does 
not have a signal sequence. We encapsulate our knowledge about the association between 
a feature and the compartments in a feature vector. We count the number of proteins in 
each compartment that possess the feature. Each component of the feature vector equals 
the fraction of the total number of proteins in that compartment possessing that feature: 
 
 L)|(featureP

�

 = (p(feature | C), p(feature | N), p(feature | E)) (2) 
 
For example, for the feature “NLS = true,” we obtain p(NLS=true | N) by counting the 
fraction of the total number of nuclear proteins that contain the nuclear localization signal 



 

 

 

5

(NLS). Note that unlike the components of the state vector, the components of each 
feature do not sum to 1. 
 

Updating the State Vector Using Bayes’ Rule with Feature Vectors 
 
Following along with the schematic in figure 1a, we start our analysis with a prior - a 
state vector that contains the assumed default probabilities of a protein being in the 
different compartments. We update the prior using a feature vector that corresponds to a 
feature that the protein possesses, and then obtain an a posteriori state vector. Thus, if 
we update the state vector of protein m with the feature vector corresponding to the 
feature "nuclear localization signal present (NLS=true)," we obtain  
 
 true)NLS |(Lm >P

�

 = (pm(C | NLS=true), pm(N | NLS=true), pm(E | NLS=true))  
  (3) 
 
which could, for instance, look like (0.1, 0.6, 0.3). Specifically, we use Bayes’ Rule of 
conditional probability for the updates (Pitman, 1997): 
 
 pm(L | feature) = pm(L) · p(feature | L) / Z (4) 
 
where Z is a normalization factor. Z equals the product of the fraction of the total number 
of proteins in each location having that feature and the prior probability of the protein m 
being in that location, summed over all locations, 
 
 Z = �

L
m(L)pL)p(feature  . |  (5) 

 
For instance, L could be cytoplasm and feature could be “NLS=true.” Then p(NLS=true | 
C) is the fraction of all cytoplasmic proteins with an NLS (that is, the cytoplasmic 
component of the feature vector true)NLS |(Lm >P

�

), and pm(C | NLS=true) is the 
chance that the given protein m with an NLS is cytoplasmic. 
 

After an update, we make the a posteriori state vector our new prior, and repeat 
the procedure using a different feature vector. We then get a new a posteriori state 
vector, which serves as the prior for another feature. We sequentially apply all available 
feature vectors, updating the state vector every time.  
 

Thresholding a State Vector to Localize a Protein in a Specific Compartment 
 
After we apply all the features and arrive at a “final” state vector for each protein, we 
feel justified in localizing the protein to a single compartment if the probability density is 
strongly concentrated to that compartment. We call this procedure “thresholding,” and 
make this determination in two ways: 
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(i) Top-2 difference. We choose the two compartments that have the greatest probability 
values in the state vector. If the difference between their probability values is greater than 
a particular threshold, we localize the protein to the compartment corresponding to the 
larger value. Otherwise, we leave the protein unlocalized.  
 
(ii) Entropy. We calculate the entropy of the state vector using the standard formula, viz: 
 
 S( mP

�

) = �.
L

mm (L) p(L)p ln . , (6) 

 
where the sum is over all locations L.  
 
A protein with low entropy has a high probability of being in a particular compartment 
and a low probability of being in the others. Hence, it is localized well. In this paper, we 
have used an entropy threshold to differentiate between the localized and unlocalized 
proteins, although the top-2 difference threshold performs almost as well. 
 

Estimating Relative Compartment Populations with an Overall Compartment 
Population Vector 
 
To estimate the relative population of the various compartments (i.e. the ratio of the total 
number of proteins present in those compartments), we could simply tally the specific 
localizations found via the entropy threshold. However, some proteins are not strongly 
localized by our procedure. Moreover, we feel it is quite reasonable for some proteins not 
to have a definite localization. For instance, several proteins have been found 
experimentally in more than one compartment (Hodges et al., 1999; Ross-Macdonald et 
al., 1999). In particular, the transcription factor complex NFλB is known to shuttle 
between an inactive form in the cytoplasm and an active form in the nucleus (Kopp & 
Ghosh, 1994), and various structural proteins also appear both in the nucleus and the 
cytoplasm (see TUB4 example below). 
 
Hence, we use a different procedure to estimate the relative population of each 
compartment. As schematized in Figure 1b, we build an overall compartment population 
vector  (L)N

�

, in which each component represents the overall population of a certain 
compartment: 
 
  (L)N

�

= ( v(C), v(N), v(E) ) (7) 
 
We obtain each component v(L) by summing over the state vectors of all the proteins the 
probability density that a protein would be in that compartment. For instance, for the 
cytoplasmic component of the vector, v(C), we have 
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 v(C) = int(� )
m

m Cp ) ). (8) 

 
 (L)N

�

provides an estimate of the overall populations of the different compartments 
without requiring individual predictions. 
 
While this summation of probabilities may appear to be intuitively obvious, its formal 
justification is not trivial. We present the analogy of our problem of estimating the 
compartment populations to the density matrix formalism in quantum mechanics at our 
website. While not strictly necessary, we think this analogy is stimulating and useful in 
connecting our analysis with a number of powerful mathematical tools. 
 

IMPLEMENTATION 
 
To successfully implement the formalism, we need (i) high-quality training and testing 
data, (ii) a good prior, (iii) relevant features, and (iv) a cross-validation protocol. 
 

The Localized-1342, the Training and Testing Dataset  
 
To train and test our system, we used the localizations from Swiss-Prot (Bairoch & 
Apweiler, 2000) and MIPS (Frishman et al., 1998; Mewes et al., 1998, 1999; Frishman & 
Mewes, 1997) -- and to a lesser extent from the Yeast Protein Database (YPD, version 
9.08) (Hodges et al., 1999). We prepared 4 different datasets of localized yeast proteins. 
We called them Localized-465, Localized-704, Localized-1342 and Localized-2013, 
where the terminal number (e.g. "-465") represented the number of proteins in the 
dataset. The four datasets are described in detail in figure 2. They differ in their overall 
"quality."  
 
Our quality factor for each protein describes the degree to which we were sure that its 
localization was based on real experimental evidence (rather than computational 
predictions), and that this localization was consistent amongst the various data sources 
(e.g. MIPS versus Swiss-Prot). In particular, a Swiss-Prot localization was characterized 
as high-quality only if it was not annotated as “predicted” or “possible,” and if the protein 
could be easily assigned to a single collapsed location (e.g. excluding cytoskeletal proteins 
or proteins with multiple locations). Similar exhaustive characterizations were performed 
for proteins with MIPS localizations. 
 
Consideration of the data quality was critical for training and testing, since we had to be 
careful to guard against "circular logic" -- that is, training our computational prediction 
algorithm on computationally predicted localizations in the training set. For example, if 
the training data contained proteins that were predicted to have membrane (T) 
localization according to transmembrane prediction programs, the results of our algorithm 
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could not be considered valid as it also makes use of a generic transmembrane prediction 
program.  
 
Amongst our four datasets, the smallest one (Localized-465) contained only the proteins 
with the highest quality localizations, i.e. proteins which had consistent localizations in 
MIPS, Swiss-Prot and YPD, and which were not annotated to have predicted localization 
in any of these data sources. The largest one (Localized-2013) contained a number of 
additional proteins with more problematic localizations that could potentially be derived 
from computational predictions. Unfortunately, we were not sure of the degree to which 
localization was derived from computational predictions because of the incomplete 
annotations of many yeast proteins. Our third dataset (Localized-1342) included all 
proteins that had non-conflicting localizations in either MIPS or Swiss-Prot or both, and 
that were not annotated to have a predicted localization. We felt that this dataset gave the 
best balance between overall quality and the number of proteins and largely avoided the 
“circular validation” problem. The cross-validation and extrapolation results in this paper 
are based on this dataset. 

Five Collapsed Compartments (C, E, N, M and T) and their Prior Population   
 
The proteins in the Localized-1342 dataset are mainly associated with 12 subcellular 
compartments (see table 1, figure 3). However, many of these compartments contain only 
a very small number of proteins, greatly skewing the statistics. For instance, there are few 
proteins in vesicles and vacuoles (<30 in each), in contrast to the 494 nuclear proteins. 
Hence, we found it advantageous to collapse the 12 compartments into five new 
“generalized” compartments that lumped together a number of the related smaller 
compartments, allowing for a more even distribution of proteins. Our compartments are 
the nucleus (N), mitochondria (M), cytoplasm (C), membrane (T for Transmembrane), 
and secretory pathway (E for Endoplasmic reticulum or Extracellular). Our T 
compartment contains all the integral transmembrane (cell membrane, plasma membrane 
and membranes of various compartments such as mitochondria, nucleus, golgi) proteins, 
whereas our E compartment contains all the secreted proteins and proteins in the 
secretory pathway and small organelles (i.e., proteins in the endoplasmic reticulum, golgi, 
vacuoles, vesicles and peroxisome). 
 
Our five compartments are mutually exclusive; a protein cannot logically be in two 
compartments simultaneously. We excluded all cytoskeletal proteins from our training 
data, because most of these proteins could not be easily localized to a single one of our 
five compartments. For example, cytoskeletal Gamma-Tubulin (TUB4), a protein 
localized to the spindle pole body (Sobel & Snyder, 1995), has the following MIPS 
subcellular localization annotation: “spindle pole body; cytoplasm; nucleus.”  
 
For our initial training and testing, we used a prior based on the relative proportions of the 
Localized-1342 proteins in the different compartments. This is shown in figure 4. We 
used a new composite prior for the extrapolation (discussed later). 
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A Diverse Set of 30 Features: motifs, overall-sequence, and whole-genome 
 
The features that we used to implement the Bayesian formalism are described in detail in 
table 2. We used a total of 30 features. The features were first divided into three 
categories depending on the information they were derived from: (i) motifs (16 features), 
(ii) overall-sequence (4 features), and (iii) whole-genome (10 features). The features in 
the “motif” category were based on a small sequence pattern in a protein. For instance, 
the feature HDEL (the endoplasmic reticulum retention signal) denoted the presence or 
absence of the HDEL motif at the C-terminus of a protein. The features in the “overall-
sequence” category were based on the entire sequence of a protein. For example, the 
feature PI was the isoelectric point pI of a protein, whereas the feature TMS1 denoted the 
number of predicted transmembrane segments in a protein. Finally, the “whole-genome” 
features were derived from considering whole-genome level data; the specific values of a 
protein’s whole-genome features were only meaningful in the context of the values of all 
other proteins in the genome. For instance, the feature MAYOUNG contained the mRNA 
absolute expression data in the experiments of Young and colleagues (Holstege et al., 
1998), whereas the feature MRCYCSD contained the standard deviation in mRNA 
expression level over time (i.e. expression fluctuation) for proteins in the yeast cell cycle 
experiment (Spellman et al., 1998).  
 
We also subdivided the 30 features into three groups depending on how much they 
contributed to the overall predictive strength of our system: the 10 most important 
features, 9 other included features and 11 redundant features. These are described in 
detail later. For all the results reported in this paper, we excluded the 11 redundant 
features and based our system on the best 19 features.  
 
For each feature, we divided proteins into a specific number of bins (see table 2) 
according to the different values. For instance, for the knockout feature (KNOCKOUT), 
we divided proteins into two bins: lethal versus viable knockouts. On the other hand, for 
the Young expression data (MAYOUNG feature), we divided proteins into 10 different 
bins of identical size, according to their absolute levels of mRNA expression. We then 
used each bin as a separate feature, and created a separate feature vector for each bin. 
We updated the state vector of a protein by using the feature vector of the bin it belonged 
to. For example, if a protein was associated with bin four of the Young dataset 
(MAYOUNG bin=4), we used the feature vector L)|4bin (MAYOUNG >P

�

 to update 
its state vector. 
 
For identifying a number of the “motif” features, we used fairly simple rules that could be 
summarized in either regular expressions or weight matrices. We could, of course, have 
used more advanced signal recognition methods (such as the system of Claros & Vincens 
(1996) for identifying mitochondrial proteins). However, many of these are implemented 
as complex neural network programs accessible only via mail servers, and using them 
would have substantially increased the software engineering complexity of our system. 
We decided to use the simpler approach first, as our goal here was primarily to see how 
we could integrate and balance many diverse features, particularly those involving the 
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whole-genome information, with the traditional sorting signals. We did elect, 
nevertheless, to use the SignalP server to help identify proteins in the secretory pathway  
(feature SIGNALP in our scheme)(Nielsen et al., 1997, 1999; von Heijne et al., 1997). 
This identifies the most basic sorting signal, and we found that incorporating it did 
improve the overall performance slightly beyond that obtained from the simple weight 
matrix approach (feature SIG1). 
 

Cross-validation and Correlated Features 
 
Our Bayesian system is a "naive" or "simple" case of a more general Bayesian network in 
that it implicitly assumes that all features are independent and uncorrelated (Friedman et 
al., 1997). This is, of course, not completely true for the features we are using. However, 
by partitioning our dataset into separate training and test sets and using cross-validation to 
measure the performance of our system, we can avoid misleading results due to over-
parameterization (Efron & Tibshirani, 1986). Furthermore, we can identify the most 
redundant features -- those that contribute the least to the overall prediction accuracy or 
actually hurt the prediction -- and remove them. We can also highlight the features that 
contribute the most to the strength of the overall prediction.  
 
Specifically, we trained and tested our system using a seven-fold jackknife on the proteins 
with known localizations. We divided the Localized-1342 set into 7 subsets, each 
containing ~190 proteins. The proteins in each subset were selected completely randomly. 
Each protein belonged to only a single subset, and there were no duplicated proteins in 
any subset. We then predicted the localization of the proteins in each subset based on 
training our system on the remaining ~1150 proteins that belonged to the other 6 subsets. 
 
When we performed the cross-validation, we observed that the addition of some features 
with redundant information decreased the overall prediction accuracy, as is to be 
expected because of the implicit correlations. Table 2 summarizes the degree to which 
each feature raised or lowered the prediction accuracy when it was added to or subtracted 
from our system. This gives a rough measure of the "information content" of the feature. 
In particular, we found that using either the absolute expression levels from the SAGE or 
GeneChip experiments individually gave better results than when we used both these 
features simultaneously (features MAYOUNG vs. MASAGEG). In such cases, we 
included only one of these features in our implementation, and denoted the other feature 
as “redundant” (table 2). We would have obtained very similar results if we interchanged 
any of the “redundant” features with their partners that are included in our current 
implementation.  
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PERFORMANCE ON 1342 PROTEINS WITH KNOWN 
LOCALIZATION 

Analysis of Individual Protein Predictions  
 
When we applied our procedure to the testing set proteins, we found that they had a fairly 
even distribution of entropies, from 0 to 1.55, as shown in the entropy vs. coverage graph 
(figure 6a). Consequently, the error rate varies linearly with the coverage (figure 6b). We 
localized 2/3 of the proteins in the Localized-1342 set with an entropy threshold of 0.91. 
For each of these proteins, we compared our predicted compartment with the protein’s 
observed location. We correctly predicted the compartments of 75% of these proteins 
(figure 5a). Nuclear proteins were predicted extremely well, whereas membrane and 
secretory pathway proteins were predicted relatively poorly (N 88% correct vs. T 39% 
correct and E 50% correct). 
 
As shown in the table related to figure 2, the overall cross-validation prediction accuracy 
for the Localized-465 dataset (the dataset with highest-quality protein localizations) was 
very high at 88%. The Localized-704 dataset had the same accuracy (75%) as the 
Localized-1342 set. The low-quality dataset, Localized-2013, had a low prediction 
accuracy (72%). Thus, the cross-validation prediction accuracy decreased with the 
quality of localization in the dataset. 
 

Relative Compartment Populations in the Localized-1342 Set 
 
We estimated the populations of the different compartments in the Localized-1342 set by 
constructing an overall compartment population vector. The comparison between the 
known compartment populations of the Localized-1342 proteins and the compartment 
populations estimated by our method are shown in figure 5b. We estimated more nuclear 
(N) proteins and fewer cytoplasmic (C) proteins than those present in the Localized-1342 
set. 
  
Note how the overall compartment population estimate is considerably more accurate 
than the simple summation of the individual “well localized” protein predictions (92% vs. 
74%), particularly for proteins in the less populated compartments (see caption for figure 
5b). One can readily rationalize this: the state vectors of the proteins belonging to one of 
the small compartments (i.e. the golgi which is part of E) may contain appreciable 
probability values for that compartment. However, these values are usually not high 
enough to actually localize the proteins to this minor compartment when the state vectors 
are thresholded, and are thus ignored when one imposes a single localization on every 
protein. On the other hand, these probability values accumulate in the overall 
compartment population vector.  
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EXTRAPOLATION TO THE 4700 YEAST PROTEINS WITH 
UNKNOWN LOCALIZATION 
 
After the testing and training, we used our system to localize the 4700 yeast proteins that 
did not have a known localization (we called this set the Unknown-4700). We were then 
in a position to estimate the overall populations of the various compartments in the entire 
yeast genome.  
 

A Composite Prior Combining MIPS and Snyder-Lab Results 
 
A fair and unbiased prior is essential to obtain accurate extrapolation results. As should 
be apparent from the above, the Localized-1342 prior is rather skewed towards nuclear 
proteins, perhaps reflecting the interests of investigators. We extensively examined a 
variety of other possible priors, based on our other possible training sets (i.e. the 
Localized-465, Localized-704, and Localized-2013), the overall composition of the MIPS 
database, and the experimental data from the Snyder lab (Ross-Macdonald et al., 1999). 
These are shown in the various subpanels of figure 4. In the Snyder lab experiments, 
randomly selected ~400 genes were disrupted on a large scale using a minitransposon 
system, and the location of the subsequent epitope-tagged proteins was determined using 
immunofluorescence.  
 
The MIPS prior represents a large number of localized yeast proteins (1935), but it is 
biased towards nuclear proteins. Due to the way the experiments are done, the Snyder 
prior, which represents a smaller sampling of yeast proteins (367), accurately estimates 
the relative fraction of the yeast genome devoted to nuclear proteins, but tends to shift, in 
an understandable way, proteins from the mitochondrial, membrane, and secretory 
pathway compartments to cytoplasmic proteins. Consequently, we combined the E, M, 
and T parts of MIPS prior with the N part of Snyder prior to construct a more 
representative prior. We call this the composite prior. Its construction is described in 
detail in the caption to figure 4. 
 

Extrapolation Results 
 
To determine the locations of the Unknown-4700 yeast proteins, we trained the feature 
vectors on the entire Localized-1342 set, and used the composite prior. We calculated the 
overall compartment population vector for the Unknown-4700 proteins, which gave us an 
estimate of the different compartment populations. We compared these relative 
compartment populations with those in the Localized-1342 set (figure 7a). We estimated 
many more membrane (T) proteins than those expected by the relative populations of the 
Localized-1342 set (33% vs. 13%). This reflects the fact that a high proportion of yeast 
proteins are membrane proteins and that the training data (the Localized-1342) was 
biased against membrane proteins. Nuclear (N) proteins also constituted a large part of 
our estimates (33%), probably due to the fact that the training data was so strongly biased 
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towards them. However, we did not obtain a higher proportion of cytoplasmic (C) 
proteins (18% vs. 32%). 
 
We localized 2/3 of the Unknown-4700 proteins to individual compartments using an 
entropy threshold of 1.12, and left the remaining proteins unlocalized. We compared the 
relative compartment populations thus obtained with those obtained from the overall 
compartment population vector (figure 7b). Membrane and nuclear proteins (T 24%, N 
23%) also dominated the predictions obtained from thresholding, and only 11% of the 
proteins were localized to the cytoplasm (C). The relative ratios of cytoplasmic and 
nuclear proteins obtained from the above two methods (C 11% vs. 18%, and N 23% vs. 
33%) suggested that the overall compartment population vector gave a more reliable 
estimate of the relative populations of the different compartments than the thresholded 
predictions. 
 

Combined Results for All ~6000 Proteins in Yeast Genome, on the Web 
 
We determined the total populations of the different compartments in the entire yeast 
genome (~6000 proteins) by adding (i) the populations of the different compartments in 
the overall compartment population vector of the Unlocalized-4700 proteins, and (ii) the 
compartment populations of the Localized-1342 proteins. The results are shown in figure 
7c. We present our feature vectors and state vectors for all yeast proteins on our website 
http://bioinfo.mbb.yale.edu/genome/localize. 
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DISCUSSION AND CONCLUSION 
 
In this paper, we described a system for determining the subcellular localization of 
proteins using Bayesian formalism. Our approach has a number of key attributes: the 
incorporation of expression data, the identification of redundant features, the use of an 
entropy threshold to identify readily localized proteins, the estimation of overall 
compartment populations without localizing every protein, and the development of an 
unbiased composite prior. We successfully implemented our system and performed a 
comprehensive analysis of the yeast genome. Since our system is generally applicable, it 
can be used to predict the subcellular locations of proteins in other organisms, such as the 
worm. Below, we discuss a number of aspects of our system in relation to the other 
approaches for localization prediction.  
 

Flexible but does not Model Physical Process 
 
The main advantage of our system lies in its flexibility. In a rule-based system, the order 
of the application of rules is fixed. At every step, the program has to classify a protein 
irreversibly into certain compartments according to these rules. On the other hand, our 
simple Bayesian approach never rigidly classifies proteins into any compartments until the 
very end. The probabilities of a protein being in different compartments change gradually. 
In the end, depending upon the various thresholds applied, our system may localize a 
protein to a compartment, or leave it unlocalized. New and diverse features can be added 
to our system easily, because the order of the features is not important.  
 
The “flip” side of the flexibility of our system is that it models the physical process of 
protein sorting less directly than an expert system. In an expert system, the order of the 
application of rules can potentially match the actual way the protein is sorted -- e.g. in the 
secretory pathway.  
 

Integration of Whole-Genome Data, Particularly from Expression Studies 
 
The flexibility of our system is particularly important with regard to the integration of the 
whole-genome data such as that from the expression studies. We believe that the 
incorporation of the whole-genome features is a particularly novel attribute of our system.  
 
One further aspect of this addition is that it may enable our system to better localize 
proteins for which gene-prediction places the N-terminus incorrectly. As pointed out by 
Reinhardt & Hubbard (1998), many genes are automatically assigned in large genome 
analysis projects, and these assignments are often unreliable for the 6’-regions. This can 
result in missing or only partially included leader sequences, thereby causing problems for 
sequence-motif-based localization algorithms. Similar considerations apply to the 
localization of EST fragments.  
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Dependence on the Prior and Feature Training Data  
 
One of the major disadvantages of our approach is its dependence on the prior and the 
data used to build the feature vectors. The dependence on the prior is, of course, a 
general issue in Bayesian analysis that cannot be avoided. We have tried to overcome this 
difficulty to some degree by using the data from the Snyder lab.  
 
Similar data-dependency issues arise with either neural network or expert system 
approaches. In this context, one of the advantages of the Bayesian approach is that the 
effects of the various features and assumptions are a bit more transparent than they are 
for neural networks, allowing one to appreciate biases in the training data better. 
However, the addition of an incorrect prior or a badly constructed feature will globally 
affect the proportions of all the compartments in our system. This is in contrast to the 
expert system approach, where a bad rule applied late in the sorting process will only 
have a “local” effect, changing the balance between only two or three compartments.   
 

Accommodation of Unlocalized Proteins 
 
Our system can readily accommodate proteins that do not strongly localize to a single 
compartment. A protein can be in such an unlocalized state either because it is in reality 
present in more than one compartment (e.g. NFλB, see above), or because we currently 
do not have sufficient clues to determine its localization. In analogy with quantum 
mechanics methodologies, our system builds an overall compartment population vector to 
determine the total populations of the different compartments. This vector correctly 
integrates the information from these ambiguously localized proteins. 
 

Future Improvements 
 
In the future, we hope to build on the strengths of our system (its flexibility) and try to 
compensate for its problems (dependence on the prior and features). In particular, we 
hope to add more features. These will be based on more advanced methods for signal 
sequence recognition (i.e. connecting to neural network based servers), on other whole-
genome data (e.g. the protein abundance data of Gygi et al. (1999)), on protein-protein 
interaction maps (Enright et al., 1999; Uetz et al., 2000), and on transfering annotation 
from sequence homology to other proteins of known localization (Wilson et al., 2000). 
 
We would also like to use more data from the Snyder minitransposon experiments to 
construct our composite prior and training set. Eventually, these experiments should be 
extended to a large fraction of the genome. Finally, with more data and better features, 
we should be able to use more distinct compartments, and localize proteins more 
specifically to the minor compartments. 
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TABLE 1 – COLLAPSED COMPARTMENTS 
 
Collapsed 
Compartment 

Compartments used for 
collapsing 

Description 

C Cytoplasm Cytosolic proteins (not in any organelles or 
membranes or cytoskeleton) 

M Mitochondria Mitochondrial proteins 
N Nucleus Nuclear proteins 
T Membrane 

Plasma membrane 
Integral transmembrane proteins (in the cell 
membrane, the plasma membrane, or the 
membranes of various compartments such as 
mitochondria, nucleus, golgi) 

E Endoplasmic reticulum (ER)   
Golgi apparatus 
Peroxisome, Vacuole, Vesicle 
Extracellular 

Proteins involved in the secretory pathway 
and those in small organelles 
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TABLE 2 – FEATURES 
 
The table describes the 30 features used in our system. In the first table, each row 
contains the name of a feature, its general type and subtype, its contribution towards the 
overall prediction strength (in terms of a percentage change described below), its status 
regarding our implementation, and the number of bins used to model it. The second table 
provides more extended description of each feature. 

The positive values in the “%Change” column denote the fall in the prediction accuracy if 
the cross-validation is performed without the corresponding feature -- i.e. if it is excluded 
from the 19 basic features used for the analysis. Note that the prediction accuracy for 
cross-validation for the Localized-1342 set is 75% (74.7% to be exact) when we use the 
19 basic features. Thus, for example, when the feature MIT1 is excluded, prediction 
accuracy falls by 5.1% (to 74.7 - 5.1 = 69.6%). Negative values in the “%Change” 
column denote a fall in the prediction accuracy if the cross-validation is performed after 
including the corresponding feature in the system, beyond the 19 basic ones. Thus, when 
the feature COILDCO is included in our system, prediction accuracy falls by 0.1% (to 
74.7 - 0.1 = 74.6%). A feature has “Important” status if the prediction accuracy falls by 
more than 0.5% after the exclusion of the feature. Such features are included in our final 
implementation. The status of the feature is “Included” if the feature is included in our 
final implementation along with the “Important” features. A feature has “Redundant” 
status if its inclusion decreases the prediction accuracy. Such features are not included in 
our final implementation. (We could also have computed the redundancy of each of our 
features by computing the mutual information between each of them.) Some further 
notes: (i) "from-MIPS" means “this information could be derived from MIPS or 
PEDANT” (Frishman et al., 1998; Mewes et al., 1998, 1999; Frishman & Mewes, 1997). 
(ii) "from-YPD" means “as given in the Yeast Protein Database, YPD” (Hodges et al., 
1999). We mostly used version 8.15. However, some features were taken from a newer 
version (9.08). (iii) "from-NK92" means “as described in Nakai & Kanehisa (1992).” (iv) 
The protein sequence patterns are written in the UNIX regular expression format.  
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A. Brief Description 
 

Feature Type Subtype %Change Status Bins
      
MIT1 Motif Signal 5.1 Important 2
GLYC Motif Signal 1.2 Important 10
SIGNALP Motif Signal 1.0 Important 2
SIG1 Motif Signal 0.7 Important 2
NUC1 Motif Signal 0.6 Important 6
PI Overall-sequence Isoelectric Point 1.3 Important 10
TMS1 Overall-sequence Transmembrane helix 0.9 Important 5
MAYOUNG Whole-genome Absolute expr. (GeneChip) 3.6 Important 10
KNOCKOUT Whole-genome Knockout mutation 1.8 Important 2
MRDIASD Whole-genome Expr. fluctuation (Diauxic Shift) 1.4 Important 10
 
PLMNEW1 Motif Signal 0.3 Included 2
FARN Motif Signal 0.3 Included 2
GGSI Motif Signal 0.3 Included 2
MIT2 Motif Signal 0.2 Included 2
HDEL Motif Signal 0.1 Included 2
NUC2 Motif Signal 0.1 Included 3
POX1 Motif Signal 0.1 Included 2
MRCYELU Whole-genome Expr. fluctuation (Cell Cycle) 0.4 Included 10
MRCYCSD Whole-genome Expr. fluctuation (Cell Cycle) 0.2 Included 10
 
COILDCO Motif Coiled coils -0.1 Redundant 2
CKIISITE Motif Kinase target site -0.1 Redundant 2
CDC28SITE Motif Kinase target site -0.3 Redundant 4
PKASITE Motif Kinase target site -0.5 Redundant 5
ROSTALL Overall-sequence Surface residue composition -0.8 Redundant 9
LENGTH Overall-sequence Protein length -1.6 Redundant 10
MASAGEL Whole-genome Absolute expr. (SAGE) -0.3 Redundant 10
MRCYC15 Whole-genome Expr. fluctuation (Cell Cycle) -0.4 Redundant 10
MRCYC28 Whole-genome Expr. fluctuation (Cell Cycle) -0.6 Redundant 10
MASAGEG Whole-genome Absolute expr. (SAGE) -0.7 Redundant 10
MASAGES Whole-genome Absolute expr. (SAGE) -0.9 Redundant 10
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B. Extended Description 
 

Feature Description 
MIT1 More than one N-terminal residue is cut (good chance of being mitochondrial) 

(from-YPD). 
GLYC Glycosylation site (from-NK92). 
SIGNALP Secretory signal peptide according to the SignalP server (Nielsen et al., 1997, 

1999; von Heijne et al., 1997). 
SIG1 Results of a simple program that predicts if a protein has a signal sequence. The 

pattern consists of a charged residue within the first seven residues, followed by 
a stretch of 14 residues with an average GES hydrophobicity less than -1 
kcal/mole.  

NUC1 Four-residue patterns of 
  1. All basic amino acids (K or R) or  
  2. Three basic amino acids (K or R), and one H or P 
(from-NK92). 

PI pI (Isoelectric Point) values (from-MIPS)(from-YPD). 
TMS1 Results of a program that predicts whether a protein has transmembrane (TM) 

segments. TM segments were identified using the GES hydrophobicity scale 
(Engelman et al., 1986). The values from the scale for amino acids in a window of 
size 20 were averaged, and then compared against a cutoff value. We used the 
Boyd and Beckwith MaxH criteria to set the cutoffs as in previous analyses (Boyd 
et al., 1998; Klein et al., 1985; Gerstein et al., 2000).  

MAYOUNG Absolute mRNA expression in a GeneChip experiment (Holstege et al., 1998). 
KNOCKOUT Knockout mutation (lethal or viable). (from-MIPS)(from-YPD) (Baudin et al., 1993; 

Shoemaker et al., 1996; Wach et al., 1994). 
MRDIASD Standard deviation in mRNA expression level over time (i.e. expression fluctuation) 

for a protein in the diauxic shift experiment (DeRisi et al., 1997). 
 
PLMNEW1 Plasma membrane signal (from-NK92). We checked for this signal in the entire 

sequence, rather than just at the C-terminal. 
FARN C-terminal farnesylation site: the sequence pattern consists of a Cysteine 

followed by two aliphatic residues and one more residue at the C-terminus 
(C[ALIVG][ALIVG].$) (Stryer, 1996). 

GGSI C-terminal geranylgeranylation site (CC$|C.C$|CC..$) (Stryer, 1996). 
MIT2 Mitochondrial matrix import sequence: 

The N-terminal of the protein has repeated alternating hydrophobic and hydrophilic 
patterns, and the protein contains at least 4 S or T residues in its 20 N-terminal 
residues. 

HDEL Endoplasmic reticulum retention signal (HDEL) (from-NK92). We checked for the 
presence of this signal in the 9 C-terminal residues. 

NUC2 Pattern starting with a P and followed within 3 residues by a basic 4-residue 
segment containing K or R residues (P.{0,3}[KR]{4}) (from-NK92). 

POX1 C-terminal Peroxisome import signal ([SA][KRH]L) (from-NK92). 
MRCYELU Standard deviation in mRNA expression level over time (i.e. expression fluctuation) 

for a protein in the elutriation time series experiment in Yeast Cell Cycle Analysis 
Project (Spellman et al., 1998). 

MRCYCSD Standard deviation in mRNA expression level over time (i.e. expression fluctuation) 
for a protein in the Alpha-factor arrest time series experiment in Yeast Cell Cycle 
Analysis Project (Spellman et al., 1998). 
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COILDCO Results of the Multicoil program that predicts the presence of coiled coils (from-

MIPS) (Wolf et al., 1997). 
CKIISITE Potential casein kinase II protein kinase sites (from-YPD). 
CDC28SITE Potential cdc28 protein kinase sites (from-YPD). 
PKASITE Potential protein kinase A (cAMP-dependent protein kinase) target sites (from-

MIPS)(from-YPD). 
ROSTALL As given in the Andrade et al. paper, we calculated the two eigenvectors for all 

proteins using their surface amino acid compositions. We then plotted the proteins 
in the plane of the eigenvectors and divided the plane into 9 compartments, each 
of which served as a bin (Andrade et al., 1998; Rost & Sander, 1994). 

LENGTH Length of a mature protein after the removal of N- and C- terminal peptides (from-
MIPS)(from-YPD). 

MASAGEL Absolute mRNA expression of l phase proteins in the SAGE experiment 
(Velculescu et al., 1997). 

MRCYC15 Standard deviation in mRNA expression level over time (i.e. expression fluctuation) 
for a protein in the cdc15 arrest time series experiment in Yeast Cell Cycle 
Analysis Project (Spellman et al., 1998). 

MRCYC28 Standard deviation in mRNA expression level over time (i.e. expression fluctuation) 
for a protein in the cdc28 time series experiment in Yeast Cell Cycle Analysis 
Project (Spellman et al., 1998). 

MASAGEG Absolute mRNA expression of g/m phase proteins in the SAGE experiment 
(Velculescu et al., 1997). 

MASAGES Absolute mRNA expression of s phase proteins in the SAGE experiment 
(Velculescu et al., 1997). 
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FIGURE 1 - BAYESIAN FORMALISM AND OVERALL 
COMPARTMENT POPULATIONS 
 
Part A: Bayesian Formalism. The pie charts in the figure show the state vector of 
protein m (the distribution of probabilities of protein m being in the different 
compartments) at various stages of the Bayesian analysis. The bar graphs show the 
feature vectors L)|(featureP

�

 for each feature. The patterns of the 3 compartments are 
shown in the schematic of the cell in the top left corner (N for nucleus—black, C for 
cytoplasm—white, E for extracellular environment and secretory pathway—gray). First, 
the state vector of the protein is updated from “Initial Prior” to “Posterior” vector using 
the feature vector for feature “NLS=true” and Bayes’ rule. For example, pm(N | 
NLS=true) = pm(N) · p(NLS=true | N) / Z, where Z is a normalization factor. See text for 
further explanation. This new state vector is then sequentially updated using various 
feature vectors. The feature mRNA expr=high can be regarded as the feature MAYOUNG 
bin=10 in our actual analysis. Similarly, the feature pI>9 can be regarded as the feature 
PI bin=10 in our actual analysis. The final state vector shows that the protein m has a 
high probability of being a nuclear protein. 
 
For reference Bayes' Rule is as follows: If B1,...,Bn are all possible mutually exclusive 
results of the first stage of a procedure, and A is an observation at a second stage, we can 
calculate the probabilities of events Bi given the occurrence of A as: 
    P(Bi|A) = P(A|Bi) · P(Bi) / [P(A| B1) · P(B1) + ... + P(A| Bn) · P(Bn)] 
Where P(Bi) = unconditional probabilities (prior probabilities), P(A|Bi) = conditional 
probabilities (likelihoods) (Pitman, 1997). 
 
Notes: (1) The sum of the probabilities in each individual bar graph is not equal to 1, 
because each bar depends on the properties of its compartment and other related 
complementary features. For example, p(NLS=true | N) + p(NLS=false | N) = 1, but 
p(NLS=true | N) + p(NLS=true | C) + p(NLS=true | E) ≡ 1. (2) If the probability for a 
location in a feature vector is 0, or if a component of the state vector becomes 0 (after 
normalizing) while updating, the probability for the corresponding location in the resultant 
state vector will always be equal to 0. To avoid this, we add a pseudo-count of 0.001 to 
all feature vector components that are equal to 0. We also add a pseudo-count of 0.001 to 
all state vector components that are equal to 0 every time we update the state vectors. 
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Part B: Estimating Overall Compartment Populations. Two ways of estimating the 
relative populations of the various compartments (i.e. the ratio of the total number of 
proteins present in those compartments) in the entire yeast genome are shown. In the top 
part, the small pie charts on the right are the state vectors of individual proteins. To 
estimate the relative population of each compartment, we build an overall compartment 
population vector  (L)N

�

, in which each component represents the overall population of a 
certain compartment:  (L)N

�

= ( v(C), v(N), v(E) ).  We obtain  (L)N
�

by adding the 
probability state vectors of all proteins. More specifically, we obtain each individual 
component v(L) by summing pm(L) of all proteins (and then rounding it to the nearest 
integer). In the bottom part, each protein probability state vector is “thresholded” to a 
specific compartment using an entropy value. If the protein lies below the entropy 
threshold, it is classified as “unlocalized” (shown as hashed).  We can estimate the 
relative population of the various compartments by simply adding up the number of 
proteins belonging to each compartment (and those left unlocalized). 
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FIGURE 2 – CREATION OF FOUR TRAINING DATASETS 
 
The Venn diagram shows how we analyzed the known protein localizations from different 
data sources to build our test and training sets. We were particularly concerned about 
making sure that our training data was of high quality -- that it was based on 
experimentally determined localizations and that these localizations were consistent 
among the various data sources. See text for more discussion. The Venn diagram consists 
of 4 circles. The bottom circle represents proteins in Swiss-Prot with high-quality 
localization (704). This is our core data. The right circle represents proteins in MIPS 
which have some localization annotation and which can be easily collapsed into a single 
compartment (e.g. excluding cytoskeletal proteins or proteins with multiple locations; see 
text; 1935). The left circle represents proteins in YPD which have some localization 
annotation and which can be easily collapsed into a single compartment (2143). The top 
circle represents proteins that have “predicted” localization annotation and thus are 
flagged as low-quality. (Note by definition this cannot intersect the Swiss-Prot circle.) 
 
From these circles, we form four subsets (described as “sets”) as follows. Set 1: Proteins 
that have the same collapsed localization in Swiss-Prot, MIPS and YPD, and have high-
quality localization in Swiss-Prot and MIPS. Set 2: Proteins that have high-quality 
localization in Swiss-Prot, but do not have the same collapsed localization in all of Swiss-
Prot, MIPS and YPD (including the proteins that do not have any localization annotation 
in either MIPS or YPD or both). Set 3: Proteins with high-quality localization in MIPS 
that have either low-quality or no localization in Swiss-Prot. Set 4: Proteins in MIPS that 
are annotated as predicted, and that have either low-quality or no localization in Swiss-
Prot. From these four sets we simply derived our four training and testing datasets as 
follows:  
Dataset Formation Number of Proteins % Correct Predictions after 

Cross-validation 
Localized-465 Set 1 465 88 
Localized-704 Localized-465 + Set 2 704 75 
Localized-1342 Localized-704 + Set 3 1342 75 
Localized-2013 Localized-1342 + Set 4 2013 72 
 
Our system was independently trained and tested using each of these 4 datasets. In each 
case, cross-validation was performed using a seven-fold jackknife test, a prior based on 
the relative proportions of the corresponding dataset (fig 4), entropy localization and the 
comparison of individual protein predictions with observed locations. The last column of 
the table denotes the percentage of the total proteins that were predicted to have correct 
localization after thresholding individual protein state vectors.  
 
One issue with training on these 4 datasets is the degree to which circular logic enters into 
our analysis. We scrutinized the Swiss-Prot and MIPS localization annotations of all 
proteins to find if they were experimentally observed to lie in a compartment or if they 
were predicted or guessed to be present in a location. Our first 3 datasets (Localized-465, 
Localized-704 and Localized-1342) contain only those proteins that were experimentally 
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observed to belong to a compartment, and hence circular logic cannot apply to them. As 
one can see from the table, the results of the cross-validation using these datasets are in 
fact better than those obtained by using the dataset Localized-2013. 
 
The Localized-1342 dataset has the largest number of proteins that are annotated to have 
high-quality localization information, and hence this dataset is independent of any circular 
logic. The cross-validation and extrapolation results in this paper are based on the 
Localized-1342 set. 
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FIGURE 3 - THE CELL AND ITS COMPARTMENTS 
 
A schematic of a cell is shown with various compartments. 
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FIGURE 4 - PRIORS 
 
Various priors are shown in the figure. Each prior (except the composite prior) represents 
the known compartment populations in the corresponding dataset. The Localized-1342 
prior is used for the testing and training procedure to obtain the results shown in this 
paper. The composite prior is devised by combining the data obtained from MIPS and the 
Snyder lab. We assume that it fairly represents the relative compartment populations in 
the entire yeast genome. The composite prior is used for the extrapolation of the locations 
of the proteins with currently unknown localization. 
 
Here we describe the construction of the composition prior in detail: Due to the 
particularities of the experimental technique used, the Snyder data accurately estimated 
the number of nuclear proteins (in a random sampling) but tended to over-assign proteins 
to the cytoplasm, shifting them from membrane, mitochondrial or secretory compartments 
(E, T, M). In contrast, the MIPS dataset was biased against cytoplasmic proteins (which 
are often not annotated with a localization) and towards nuclear proteins. Consequently, 
for our composite prior we used the relative populations of the integral membrane (T), 
mitochondrial (M) and secretory pathway (E) proteins in the overall MIPS data for the 
composite prior. However, to overcome the nuclear bias in the MIPS prior, we used the 
Snyder prior to estimate the relative population of nuclear proteins in yeast genome 
(23%). After doing this, the relative population of cytoplasmic proteins is fixed at 36% 
(by the requirement that the prior sums to 100%). We believed that this new composite 
prior was unbiased, and that it fairly represented the relative populations of the various 
compartments in yeast (figure 4).  
 
There is, in addition, much corroboration for our decision to use 23% integral membrane 
(T) proteins in the composite prior. Comparable results have been found by many 
investigators in whole-genome surveys of yeast and other completely sequenced genomes 
(Arkin et al., 1997; Boyd et al., 1998; Gerstein, 1997, 1998b; Gerstein & Hegyi, 1998; 
Goffeau et al., 1993; Jones, 1998; Rost, 1996; Rost et al., 1995; Tomb et al., 1997; 
Wallin & von Heijne, 1998). In particular, our membrane-prediction program, which 
predicted whether a protein had transmembrane helices, indicated that 22% of the 
proteins in the yeast genome were integral membrane (T) proteins (those with more than 
one transmembrane helix).  
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FIGURE 5 - CROSS-VALIDATED PERFORMANCE 
 
Part A: Correct predictions of the individual proteins after thresholding their state vectors. 
The bars in the front show the percentage of correct predictions (predicted location is the 
same as the observed location of the protein) for low-entropy Localized-1342 proteins 
(2/3 of the total dataset). The bars in the back show the percentage correct predictions for 
all Localized-1342 proteins. Each bar shows the percentage of correct predictions for 
proteins in each compartment. Membrane (T) and secretory pathway (E) proteins are 
predicted worse than average, whereas nuclear (N) proteins are predicted extremely well. 
 
Part B: Comparison between the actual known compartment populations of the 
Localized-1342 set (outer circle), and those obtained from the overall compartment 
population vector (inner circle, heavy line). The root mean square (RMS) of the 
difference in the population compartments is calculated using the standard formula 

R = (L)(L)
Q

obspred NN
��

.1 = 
) ∗

Q

(L)v(L)v
Q

L
obspred� . 2

, where vpred(L) is the predicted 

population of the compartment L, vobs(L) is the observed population of the compartment 
L, and Q is the number of compartments (Q = 5). Since the total number of proteins in our 
dataset (U) is 1342, the average population of a compartment v  = U / Q = 268.4. The 
error rate in overall population prediction (Y) is the ratio of the RMS difference (D) to the 
average population of compartments (Y = D/ v ). Then, the accuracy of prediction A = 1 – 
Y = 1 - D/ v . For the overall compartment population vector, the RMS is 22.4, the error 
rate is 8%, and the accuracy is 92%. If we threshold individual state vectors of all 
Localized-1342 proteins and perform similar calculations, we obtain 74% accuracy. 
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FIGURE 6 - ANALYSIS OF INDIVIDUAL PROTEIN PREDICTIONS 
 
Part A: Variation of the entropy of proteins with coverage during the cross-validation of 
the Localized-1342 dataset. We consider proteins in an increasing order of their 
entropies. Hence, the coverage (the fraction G from 0 to 1 of the dataset) is from low-
entropy to high-entropy proteins. The entropy for the state vector of protein m is given by 
the formula S( mP

�

) = �.
loc

mm (L) p(L)p ln . , where pm(L) is the probability that protein m 

lies in compartment L. The equation of the trend-line for the graph is S = 1.5G - 0.096, 
where S is the entropy and G is the coverage. 
 
Part B: Variation of the error rate with coverage. The error rate is the ratio of the number 
of wrong individual localization predictions to the total number of proteins U in the 
dataset. The equation of the trend-line is Y = 30G + 6.6, where Y is the error rate (as a 
percentage) and G is the coverage. Variation of the entropy with the error rate (not shown 
here) can be described by the equation of the trend-line S = 0.044Y – 0.3, where S is the 
entropy and Y is the error rate. 
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FIGURE 7 - EXTRAPOLATION 
 
Part A: Comparison between the relative compartment populations of the Unknown-4700 
proteins as expected from the known populations of the Localized-1342 proteins (outer 
circle), and as obtained from the overall compartment population vector (inner circle, 
heavy line). The composite prior is used to calculate the overall compartment population 
vector. 
 
Part B: Comparison between the relative compartment populations of the Unknown-4700 
proteins as obtained by thresholding individual state vectors (outer circle), and as 
obtained from the overall compartment population vector (inner circle, heavy line – same 
as in part A). The composite prior is used to calculate both. In the thresholding procedure, 
1/3 of the Unknown-4700 proteins (those with entropy values greater than 1.12) are left 
unlocalized and are shown with horizontal lines. 
 
Part C: Estimate of the relative compartment populations in the entire yeast genome. The 
compartment populations were calculated by adding the observed compartment 
populations of the Localized-1342 proteins, and the overall compartment population 
vector of the Unknown-4700 proteins. 



 

 

 

31

REFERENCES 
 

Andrade, M., O'Donoghue, S. & Rost, B. (1998). Adaptation of Protein Surfaces to 
Subcellular Location. Journal of Molecular Biology 276, 517-525.  

Arkin, I., Brunger, A. & Engelman, D. (1997). Are there dominant membrane protein 
families with a given number of helices? Proteins 28, 465-466.  

Bairoch, A. & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its 
supplement TrEMBL in 2000. Nucleic Acids Res 28, 45-8.  

Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. (1993). A 
simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucl. 
Acids Res. 21, 3329-3330.  

Boyd, D., Schierle, C. & Beckwith, J. (1998). How many membrane proteins are there? 
Prot. Sci. 7, 201-205.  

Claros, M. G., Brunak, S. & von Heijne, G. (1997). Prediction of N-terminal protein 
sorting signals. Curr Opin Struct Biol 7, 394-8.  

Claros, M. G. & Vincens, P. (1996). Computational method to predict mitochondrially 
imported proteins and their targeting sequences. Eur J Biochem 241, 779-86.  

DeRisi, J. L., Iyer, V. R. & Brown, P. O. (1997). Exploring the metabolic and genetic 
control of gene expression on a genomic scale. Science 278, 680-6.  

Efron, B. & Tibshirani, R. (1986). Bootstrap Methods for Standard Errors, Confidence 
Intervals, and Other Measures of Statistical Accuracy. Statistical Science 1, 54-77.  

Engelman, D. M., Steitz, T. A. & Goldman, A. (1986). Identifying nonpolar transbilayer 
helices in amino acid sequences of membrane proteins. Annual Review of Biophysics & 
Biophysical Chemistry 15, 321-53.  

Enright, A. J., Iliopoulos, I., Kyrpides, N. C. & Ouzounis, C. A. (1999). Protein 
interaction maps for complete genomes based on gene fusion events. Nature 402, 86-90.  

Friedman, N., Geiger, D. & Goldszmidt, M. (1997). Bayesian Network Classifiers. 
Machine Learning 29, 131-163.  

Frishman, D., Heumann, K., Lesk, A. & Mewes, H. W. (1998). Comprehensive, 
comprehensible, distributed and intelligent databases: current status. Bioinformatics 14, 
551-61.  

Frishman, D. & Mewes, H.-W. (1997). PEDANTic genome analysis. Trends in Genetics 
13, 415-416.  

Gerstein, M. (1997). A Structural Census of Genomes: Comparing Eukaryotic, Bacterial 
and Archaeal Genomes in terms of Protein Structure. J. Mol. Biol. 274, 562-576.  

Gerstein, M. (1998a). How Representative are the Known Structures of the Proteins in a 
Complete Genome? A Comprehensive Structural Census. Folding & Design 3, 497-512.  



 

 

 

32

Gerstein, M. (1998b). Patterns of Protein-Fold Usage in Eight Microbial Genomes: A 
Comprehensive Structural Census. Proteins 33, 518-534.  

Gerstein, M. & Hegyi, H. (1998). Comparing Microbial Genomes in terms of Protein 
Structure: Surveys of a Finite Parts List. FEMS Microbiology Reviews 22, 277-304.  

Gerstein, M., Lin, J. & Hegyi, H. (2000). Protein Folds in the Worm Genome. Pac. Symp. 
Biocomp. 5, 30-42 

Goffeau, A., Slonimski, P., Nakai, K. & Risler, J. L. (1993). How Many Yeast Genes 
Code for Membrane-Spanning Proteins? Yeast 9, 691-702.  

Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. (1999). Correlation between 
protein and mRNA abundance in yeast. Mol Cell Biol 19, 1720-30.  

Hegyi, H. & Gerstein, M. (1999). The relationship between protein structure and 
function: a comprehensive survey with application to the yeast genome. J Mol Biol 288, 
147-64.  

Hodges, P. E., McKee, A. H., Davis, B. P., Payne, W. E. & Garrels, J. I. (1999). The 
Yeast Proteome Database (YPD): a model for the organization and presentation of 
genome-wide functional data. Nucleic Acids Res 27, 69-73.  

Holstege, F. C. P., Jennings, E. G., Wyrick, J. J., Lee, T. I., Hengartner, C. J., Green, M. 
R., Golub, T. R., Lander, E. S. & Young, R. A. (1998). Dissecting the Regulatory 
Circuitry of a Eukaryotic Genome. Cell 95, 717-728.  

Jansen, R. & Gerstein, M. (2000). Analysis of the yeast transcriptome with structural and 
functional categories: characterizing highly expressed proteins. Nucleic Acids Res 28, 
1481-1488.  

Jones, D. T. (1998). Do transmembrane protein superfolds exist? FEBS Lett 423, 281-5.  

Klein, P., Kanehisa, M. & DeLisi, C. (1985). The detection and classification of 
membrane-spanning proteins. Biochim Biophys Acta 815, 468-76.  

Ladunga, I., Czako, F., Csabai, I. & Geszti, T. (1991). Improving signal peptide prediction 
accuracy by simulated neural network. Comput Appl Biosci 7, 485-7.  

Mewes, H. W., Hani, J., Pfeiffer, F. & Frishman, D. (1998). MIPS: a database for protein 
sequences and complete genomes. Nucleic Acids Res 26, 33-7.  

Mewes, H. W., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S. & Frishman, 
D. (1999). MIPS: a database for genomes and protein sequences. Nucleic Acids Res 27, 
44-8.  

Milanesi, L., Muselli, M. & Arrigo, P. (1996). Hamming-Clustering method for signals 
prediction in 5' and 3' regions of eukaryotic genes. Comput Appl Biosci 12, 399-404.  

Nakai, K. & Horton, P. (1996). A Probabilistic Classification System for Predicting the 
Cellular Localization Sites of Proteins. Intelligent Systems for Molecular Biology 4, 109-
115.  



 

 

 

33

Nakai, K. & Horton, P. (1997). Better Prediction of Protein Cellular Localization Sites 
with the k Nearest Neighbors Classifier. Intelligent Systems for Molecular Biology 5, 
147-152.  

Nakai, K. & Horton, P. (1999). PSORT: a program for detecting sorting signals in proteins 
and predicting their subcellular localization. Trends Biochem Sci 24, 34-6.  

Nakai, K. & Kanehisa, M. (1991). Expert System for Predicting Protein Localization Sites 
in Gram-Negative Bacteria. PROTEINS: Structure, Function, and Genetics 11, 95-110.  

Nakai, K. & Kanehisa, M. (1992). A Knowledge Base for Predicting Protein Localization 
Sites in Eukaryotic Cells. Genomics 14, 897-911.  

Nielsen, H., Brunak, S. & von Heijne, G. (1999). Machine learning approaches for the 
prediction of signal peptides and other protein sorting signals. Protein Eng 12, 3-9.  

Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. (1997). A neural network 
method for identification of prokaryotic and eukaryotic signal peptides and prediction of 
their cleavage sites. Int. J. Neural Sys. 8, 581-599.  

Pitman, J. (1997). Probability. Springer, New York. 

Reinhardt, A. & Hubbard, T. (1998). Using neural networks for prediction of the 
subcellular location of proteins. Nucleic Acids Research 26, 2230-2236.  

Ross-Macdonald, P., Coelho, P. S., Roemer, T., Agarwal, S., Kumar, A., Jansen, R., 
Cheung, K. H., Sheehan, A., Symoniatis, D., Umansky, L., Heidtman, M., Nelson, F. K., 
Iwasaki, H., Hager, K., Gerstein, M., Miller, P., Roeder, G. S. & Snyder, M. (1999). 
Large-scale analysis of the yeast genome by transposon tagging and gene disruption [see 
comments]. Nature 402, 413-8.  

Rost, B. (1996). PHD: Predicting One-dimensional Protein Secondary Structure by 
Profile-Based Neural Networks. Meth. Enz. 266, 525-539.  

Rost, B., Fariselli, P., Casadio, R. & Sander, C. (1995). Prediction of helical 
transmembrane segments at 95% accuracy. Prot. Sci. 4, 521-533.  

Rost, B. & Sander, C. (1994). Conservation and prediction of solvent accessibility in 
protein families. Proteins 20, 216-226.  

Shoemaker, D. D., Lashkari, D. A., Morris, D., Mittmann, M. & Davis, R. W. (1996). 
Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel 
molecular bar-coding strategy [see comments]. Nat Genet 14, 450-6.  

Sipos, L. & von Heijne, G. (1993). Predicting the topology of eukaryotic membrane 
proteins. Eur J Biochem 213, 1333-40.  

Sobel, S. G. & Snyder, M. (1995). A highly divergent gamma-tubulin gene is essential for 
cell growth and proper microtubule organization in Saccharomyces cerevisiae. Journal of 
Cellular Biology 131, 1775-88.  

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, 
P. O., Botstein, D. & Futcher, B. (1998). Comprehensive Identification of Cell Cycle-



 

 

 

34

regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. 
Mol Biol Cell 9, 3273-97.  

Stryer, L. (1996). Biochemistry. 4. W. H. Freeman and Company, New York. 

Tomb, J.-F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. 
D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., 
Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. 
G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., 
Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. 
D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., 
Borodovsky, M., Karpk, P. D., Smith, H. O., Fraser, C. M. & Venter, J. C. (1997). The 
complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-
547.  

Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, 
D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., 
Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S. & 
Rothberg, J. M. (2000). A comprehensive analysis of protein-protein interactions in 
Saccharomyces cerevisiae. Nature 403, 623-7. 

Velculescu, V. E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M. A., Bassett , D. E. J., 
Hieter, P., Vogelstein, B. & Kinzler, K. W. (1997). Characterization of the Yeast 
Transcriptome. Cell 88,  

von Heijne, G. (1986). Net N-C charge imbalance may be important for signal sequence 
function in bacteria. J Mol Biol 192, 287-90.  

von Heijne, G. (1992). Membrane protein structure prediction. Hydrophobicity analysis 
and the positive-inside rule. J Mol Biol 225, 487-94.  

von Heijne, G., Nielson, H., Engelbrecht, J. & S., B. (1997). Identification of prokaryotic 
and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 
10, 1-6.  

Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. (1994). New heterologous modules 
for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793-
808.  

Wallin, E. & von Heijne, G. (1998). Genome-wide analysis of integral membrane proteins 
from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7, 1029-38.  

Wilson, C. A., Kreychman, J. & Gerstein, M. (2000). Assessing Annotation Transfer for 
Genomics: Quantifying the Relations between Protein Sequence, Structure and Function 
through Traditional and Probabilistic Scores. J Mol Biol 297, 233-249. 

Wolf, E., Kim, P. S. & Berger, B. (1997). MultiCoil: a program for predicting two- and 
three-stranded coiled coils [In Process Citation]. Protein Sci 6, 1179-89. 

 


