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ABSTRACT
The last stage of protein folding, the “endgame,” involves the ordering of amino
acid side-chains into a well defined and closely packed configuration. We review
a number of topics related to this process. We first describe how the observed
packing in protein crystal structures is measured. Such measurements show that
the protein interior is packed exceptionally tightly, more so than the protein
surface or surrounding solvent and even more efficiently than crystals of simple
organic molecules. In vitro protein folding experiments also show that the protein
is close-packed in solution and that the tight packing and intercalation of side-
chains is a final and essential step in the folding pathway. These experimental
observations, in turn, suggest that a folded protein structure can be described as
a kind of three-dimensional jigsaw puzzle and that predicting side-chain packing
is possible in the sense of solving this puzzle. The major difficulty that must be
overcome in predicting side-chain packing is a combinatorial “explosion” in the
number of possible configurations. There has been much recent progress towards
overcoming this problem, and we survey a variety of the approaches. These
approaches differ principally in whether they use ab initio (physical) or more
knowledge-based methods, how they divide up and search conformational space,
and how they evaluate candidate configurations (using scoring functions). The
accuracy of side-chain prediction depends crucially on the (assumed) positioning
of the main-chain. Methods for predicting main-chain conformation are, in a
sense, not as developed as that for side-chains. We conclude by surveying these
methods. As with side-chain prediction, there are a great variety of approaches,
which differ in how they divide up and search space and in how they score
candidate conformations.
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INTRODUCTION

The endgame of protein folding refers to the final stage in the folding process.
It is believed that at this point in the process the overall fold has already been
determined and the side-chains are close to their final positions. The previous
steps in the folding process, especially those that determine the shape of the
overall fold, are thought to be greatly, if not completely, dictated by hydrophobic
interactions (1-3). However, here we argue that the endgame transition to the
native structure is governed by somewhat different interactions: tight close-
packed contacts between amino acid side-chains. The creation of these contacts
has been compared to crystallization (4). Clearly, such tight packing is related
to the most important characteristic of native protein structures: their unique
and precisely determined yet highly complex three-dimensional shapes. The
packing process is likely to be energetically difficult as side-chains prefer to be
disordered. The process, therefore, will have a high activation barrier and will
be slow.

Packing as a phenomenon is easily visualized and is commonplace in every-
day experience. It is dominated by a simple universal energy term, the strong
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repulsion between atoms that approach each other too closely. Packing is
a short-range phenomenon, which allows a more local treatment considering
only surrounding neighbors. Richards was one of the first researchers to em-
phasize the importance of close-packing in protein structure (5, 6), and his point
of view is becoming increasingly accepted.

With its focus on packing, this review on protein folding considers both
experimental work and theory, and is by necessity selective, given the large
body of theoretical and computational work. Attention is focused on the type
of packing observed in proteins and on the prediction of packing for side-
chains. We also focus on the more difficult problem of generating main-chain
conformations close enough to make side-chain packing predictions possible.

We have deliberately not dealt with certain related topics including molecular
dynamics (MD) simulation and homology modeling. Realistic MD simulations
of protein folding or unfolding in solution are not reviewed, in spite of the recent
work in this field (7—9). Homology modeling is also not reviewed, in spite of the
close connection to side-chain packing using a main-chain “borrowed” from a
protein with a homologous sequence. The intent here is to concentrate more on
basic principles rather than on applications. Furthermore, homology modeling
has been recently reviewed (10, 11).

This review is divided into several sections. The first section deals with the
observed packing in protein structures as determined by X-ray crystallogra-
phy and shows that proteins are more tightly packed than almost any other
organic matter. The second section extends the review of experimental work
to solution studies by relating close-packing to stability and considering how
such close-packing arises during the folding process. The third section shows
how close-packing has led to the effective solution of the side-chain prediction
problem when a sufficiently native-like main-chain conformation is known.
The fourth section considers how to generate sufficiently accurate main-chain
conformations, primarily by searching large spaces of possible conformations
with appropriate energy functions.

WHAT CAN WE LEARN FROM X-RAY STRUCTURES?

The best source of information on packing in protein molecules comes from
the hundreds of highly refined high-resolution protein structures that have been
determined over the past three decades. These structures show a high degree of
order in all the residues, except occasionally those on the surface of the protein.

How Is Packing Characterized?

The packing efficiency of a given atom is defined as the ratio of the volume of
its van der Waals (VDW) envelope to the amount of space it actually occupies
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(5, 12, 13). This simple definition masks considerable complexity. First of all,
how does one determine the volume of the VDW envelope (14)? This obviously
requires knowledge of what the VDW radii of atoms are, a subject on which
there is no universal agreement (12, 15), particularly for water molecules and
polar atoms (16, 17). Second, how does one determine how much space an
atom occupies? Or, equivalently, how much additional “cavity” volume should
be associated with a particular atom in addition to its envelope volume? These
latter questions can be addressed by various geometric constructions, discussed
in the following section.

The absolute packing efficiency of an atom is most useful in a comparative
sense, e.g. when comparing equivalent atoms in different parts of a protein
structure. In calculating the ratio of packing efficiencies, the VDW envelope
volume remains the same and cancels. One is left with just the ratio of space
an atom occupies in one environment to the space it occupies in another.

VORONOI CONSTRUCTION Voronoi volume calculations are geometrically rig-
orous methods that determine how much space an atom occupies. These cal-
culations were originally developed by Voronoi (18). They were first applied
to molecular systems by Bernal & Finney (19) and to proteins by Richards
(5). Since then they have been used successfully in the calculation of standard
volumes of protein residues, in characterizing protein-protein interactions, in
understanding protein motions, and in analyzing cavities in protein structure
(6, 12, 20-25). They have also been used in the analysis of liquids (26, 27),
and the faces of Voronoi polyhedra have been used to characterize protein ac-
cessibility and to assess the fit of docked substrates in enzymes (28, 29).

The Voronoi procedure allocates all space amongst a collection of atoms.
Each atom is surrounded by a polyhedron and allocated the space within it.
The faces of Voronoi polyhedra are formed by constructing dividing planes
perpendicular to the interatomic vectors between atoms, and the edges of the
polyhedra result from the intersection of these planes.

The Voronoi procedure requires the location of all neighboring atoms. This
is possible in the protein core, but on the protein surface many of the neighbors
of a protein atom are water molecules, which are often not well localized in
crystal structures. A variety of approaches have been developed to deal with
this difficulty. The simplest is to surround the protein with a shell of water
molecules generated on a regular grid (5). It is also possible to use predefined
boundary shapes (such as the snub cube) to truncate the “open” polyhedra at
the protein surface (23). This sort of truncation can be smoothly and rigorously
achieved by using a particular generalization of the Voronoi construction called
the alpha-shape (30, 31). In MD simulations employing periodic boundary
conditions, all atoms are completely surrounded by solvent, circumventing this
problem (17, 27).
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OTHER CONSTRUCTIONS A number of methods for measuring volumes and
packing are not based on Voronoi polyhedra (6). Connolly developed a method
for the determination of volumes based on the direct integration of the space
inside of the molecular surface envelope (32-34). Gregoret & Cohen (35)
developed a simplified way of evaluating the packing in a structure at a residue
level, rather than at the atomic level.

All the other approaches have concentrated on the explicit identification and
measurement of cavities in protein structures (36—42). The advantage of cavity
identification algorithms is that the exact location of cavities is often of great
interest. However, because the association between a particular cavity and a par-
ticular protein atom is somewhat arbitrary, one cannot directly calculate packing
efficiencies for individual atoms as with the Voronoi procedure. Another dif-
ficulty with cavity identification algorithms is that many of these algorithms
model cavities in terms of idealized spherical shapes. Such modeling does not
allow a complete partition of space; after the volumes of the spherical cavities
and the atoms’ VDW envelopes are accounted for, there is still leftover space.

How Tightly Packed Is the Protein Core?

Packing calculations on protein structure were done first by Richards more
than two decades ago (5) and then soon after by others (20, 21). These initial
calculations revealed some important facts about protein structure. First, in the
protein core, atoms and residues of a given type have a roughly constant (or
invariant) volume because the atoms inside proteins are packed together tightly,
with the interior of the protein better resembling a close-packed solid than a
liquid or gas. This high packing efficiency ratio of internal protein atoms is
roughly what is expected for the close-packing of hard spheres (0.74).

More recent calculations measuring the packing in proteins (25) have shown
that the packing inside proteins is somewhat tighter than observed initially
(~4%) and that the overall packing efficiency of atoms in the protein core is
greater than in crystals of organic molecules. When molecules are packed this
tightly, small changes in packing efficiency are quite significant. In this regime,
the limitation on close-packing is hard-core repulsion, so even a small change
is quite substantial energetically. Furthermore, Richards & Lim (13) pointed
out that the number of allowable configurations that a collection of atoms can
adopt without hard-core overlap drops off very quickly as these atoms approach
the close-packed limit.

The exceptionally tight packing in the protein core seems to require a precise
jigsaw puzzle—like fitting together of the residues inside proteins. This appears
to be true for the majority of atoms inside proteins (34). However, there are
exceptions, and some studies have focused on these, showing how the packing
inside proteins is punctuated by defects or cavities (39, 42, 43). If these defects
are large enough, they can accommodate buried water molecules (44-46).
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Researchers using highly simplified two-dimensional lattice models to study
protein structure have pointed out thattight packing in the protein core may drive
or force the formation of secondary structures (2, 47, 48). This conjecture has
been tested on somewhat more realistic off-lattice models of protein structure
(49, 50). The results have been mixed in the sense that these models do observe
high packing density driving the formation of secondary structure but to a much
lesser degree than in the lattice models.

How Tightly Packed Are Other Parts of Proteins?

THE SURFACE Measuring the packing efficiency inside of the protein core
provides a good standard, and a number of other studies have compared this
efficiency tothatin other parts of the protein. The most obvious thing to compare
with the protein inside is the protein outside, or surface. This comparison is
particularly interesting from a packing perspective because the protein surface
is covered by water, which is known to be packed much less tightly than protein
and in a distinctly different fashion [the tetrahedral packing geometry of water
molecules gives a packing efficiency ratio ©0.34, less than half that of
hexagonal close-packed solids (51)].

Calculations based on crystal structures and simulations have shown that
the protein surface has an intermediate packing, being packed less tightly than
the core but not as loosely as liquid water (15, 17). One can understand the
packing being looser at the surface than in the core in terms of a simple trade-off
between hydrogen bonding and close-packing. In the absence of interactions
other than van der Waals attractions and repulsions, liquids (and solids) tend to
pack closely, and the geometry of their interaction can be described simply in
terms of a simple hard-sphere (i.e. billiard-ball) model (52). However, if there
are also highly directional interactions, such as the hydrogen bond in water,
the situation is more complicated. Often the close-packing has to be explicitly
traded off to maintain hydrogen bonding. This trade-off can be visualized in
simulations of the packing in simple toy systems (53-55).

An important aspect of the looser packing at the protein surface is how
this packing is expected to change when the protein surface binds to another
molecule, particularly another protein. Calculations measuring the packing in
protein-protein interfaces have been done, such as those in antibody-antigen and
protease-inhibitor complexes (56, 57). These calculations have shown that the
packing at protein-protein interfaces is roughly comparable to that in the protein
interior and is tighter than the packing usually observed at the surface. Thus,
the formation of a close-packed interface may be a driving force in docking.
Simple shape complementarity (in the sense of a close-packed jigsaw puzzle)
is an integral part of many docking programs (58-61).
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INTERNAL INTERFACES A comparison of the packing at various internal in-
terfaces inside of proteins, particularly at domain-domain interfaces, is also
interesting. Such comparisons are often closely coupled with analysis of pro-
tein flexibility.

It has been argued that motion is possible across a close-packed interface
such that the close-packing is maintained throughout the motion. To prevent
the atoms from bumping into one another, the motion has to be fairly small
and parallel to the plane of the interface. There cannot be large torsion angle
changes, so side-chains maintain the same rotamer configuration (62). A large
motion is achieved by concatenating many of these small motions at many
different interfaces. This sort of small, sliding motion has been dubbed “shear
motion” (63, 64), and it has been carefully documented in humerous cases
(65, 66; see 64 for a list). Moreover, physical studies have shown that a folded
protein does not have a single perfectly defined conformation (67). Rather, ithas
some intrinsic flexibility and can readily jump among many nearly energetically
identical micro-states without significantly changing its packing. This sort of
small-scale flexibility is what makes shear motions possible.

Following a somewhat different line of reasoning, it has also been proposed
that certain interfaces may be particularly mobile, precisely because they con-
tain defects and are not close-packed. This idea was suggested in the 1970s
(22). Since then a number of workers have noted that there are relatively more
cavities at interdomain interfaces (36, 68) than elsewhere on protein interiors.
Hubbard & Argos (68), in particular, claim that these cavities have a functional
role in the mechanisms of protein movements.

Packing is also expected to be important in protein motions involving hinges.
Numerous studies have emphasized how critical the packing at the base of
the hinge is [in the same sense that the “packing” at the base of a door hinge
determines how easily the door can close (69-73)]. Hinge motions ofteninvolve
creating a new protein-protein interface (e.g. a new domain-domain interface is
formed during hinged domain closure). Calculations have shown that these
interfaces are close-packed in the same manner as the interfaces involved in
protein-protein recognition (72). This conclusion suggests that the formation
of a new close-packed interface may be a driving force for hinge motions.

WHAT DOES EXPERIMENT HAVE TO SAY?

Clearly proteins are close-packed in the crystal state. Such close-packing is also
seen in protein structures determined in solution by nuclear magnetic resonance
(NMR), but these proteins are generally rather small@0 residues) and do

not always have a large core region. This section further considers proteins in
solution. We first examine whether close-packing stabilizes proteins in solution
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and then review experimental work on how proteins fold to achieve such close
packing.

Proteins Are Well Packed in Solution

In solution, volumetric studies of both amino acids (74, 75) and whole proteins
(76-81) have been common. The mostrecent study (82) is quite comprehensive,
covering 15 proteins within a temperature range of 18€25 he results show

that studying whole proteins is more accurate than measuring the individual
amino acid volumes in solution. By studying whole proteins, the authors de-
rive some useful relationships on the basis of the molecular weight of a protein
without prior knowledge of the crystallographic data. As rough estimates, the
van der Waals volum¥,,, the molecular volum¥,,,, and the accessible surface
area$, can all be related to the molecular weidW as follows (inA3): V,, =
[100(£300] + [0.77(£0.0D)]M;; Vi = [1200(+£500)] + [1.04(£0.02)]M;;

and S, = —[1200£200)] + [14.5(£0.25]M23. The authors also show that
packing efficiencies are relatively constant between 0.72 and 0.78. This range
is very similar to the previously mentioned packing efficiencies computed from
protein structures solved by X-ray crystallography (6, 20, 25). The fact that
packing efficiencies are not limited to some finite value suggests that the packing
in individual proteins is not so rigid as the jigsaw model would have us believe
(82a). With extensive studies of T4 lysozyme packing mutants, Matthews and
coworkers (for a review see 82b) have shown that the protein’s backbone ac-
commodates changes to the size of the protein core. While losing some stability,
these lysozyme mutants are still chemically active. Therefore, proteins pos-
sess a well-packed, plastic interior, meaning that the core can tolerate a certain
amount of variation in packing density.

Good Packing Leads to Greater Stability

Improving the packing of the protein interior has recently become a method
for increasing stability (13, 83, 84). Nature uses this principle in the design
of thermostable proteins (85), and several groups have successfully applied it
to protein design. Thus far, researchers have been able to create more stable
proteins by intentionally increasing the packing efficiency for ribonuclease H1
(86), T4 lysozyme (87), and-repressor (88). Most recently, Munson et al
(89) have re-engineered the internal packing of the four-helix-bundle protein,
Rop. Their results further support the idea that increasing the core packing
efficiency can increase stability; however, it has also been found that sometimes
the increased stability caused a decrease in function. In a related experiment,
Ramachandran & Udgaonkar (90) added significant nonpolar volume to the
core of the protein barstar by chemically modifying its two free cysteines. They
showed that the change caused anincrease in protein stability without a decrease
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in activity or major alteration in structure as measured by circular dichroism
(CD). Until the crystal structure of the altered barstar is solved, they reason that
this extra stability might be attributed to increased core packing efficiency.

How Does Good Packing Arise?

From an unfolded conformation, proteins must somehow establish their high de-
gree of side-chain packing. Two descriptive models of protein folding, initially
proposed in the early 1970s, provide insight into this process. The nucleation
model (91, 92) argued that protein folding begins with a kernel of residues
making specific native-like contacts. Once the protein forms this rate-limiting
configuration, the remaining structure quickly folds into place. Alternatively,
in the hydrophobic collapse model (93), the protein first aggregates its nonpolar
groups to form a structure with aloose hydrophobic core. Then secondary struc-
tural elements develop around this core, hypothesized to be similar to molten
globule, which finally folds in a slow step to form the tightly packed native
structure. In the framework model (94), a slightly different formulation of the
hydrophobic collapse model, the secondary structure forms first, and then the
hydrophobic groups aggregate. Therefore, in the nucleation model, the tight
packing forms rapidly with no intermediates, whereas for both collapse models,
the tight packing occurs only after the formation of a molten globule—like state.

Folding Pathways

A current topic of debate is whether the molten globule is an intermediate on
or off the folding pathway (for a review see 95). Studying the kinetics of
intermediate formation can distinguish between these possibilities. Put simply,
if the molten globule is part of the folding pathway, its accumulation speeds up
the formation of the native conformation (the folding rate is proportional to the
fractional concentration of the intermediate). For off-pathway molten globules,
formation of these structures inhibits the formation of the native conformation
because the protein must fold back through the unfolded state to reach the native
one (or the folding rate is proportional to 1 minus the intermediate’s fractional
concentration). Alternative or parallel pathways (96) show a certain fraction
of the unfolded species fold quickly into the native state, while the remaining
molecules follow a slower on-pathway model. The same researchers have
shown that the molecules on the slower pathway form an intermediate with
helical secondary structure that is just slightly more energetically stable than
the unfolded state, and this minorincrease in stability retards the folding reaction
(G Wildegge & T Kiefhaber, submitted).

Furthermore, in almost all the equilibrium and kinetic studies, the authors
assumed a sequential pathway for protein folding. This view assumes that fold-
ing proceeds similarly to a chemical reaction (98, 99). The intermediates along
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this path help guide the protein to its native state (100). More recent theoretical
developments suggest that folding follows an energy landscape (for a review
see 101, 102). In this model, the intermediates arise because of kinetic traps
where the protein is actually slightly misfolded. To continue, the protein needs
to unfold only somewhat. The model is able to explain the behavior of small,
fast-folding proteins (usw<80 residues), which fold on the order of millisec-
onds instead of the usual seconds and without distinguishable intermediates
(103-110). Because these proteins are too small to form stable intermedi-
ates, they avoid the kinetic traps and therefore fold directly to the native state.
Another way to make sense of the rapid folding of small proteins is that the
combinatorial search for correct side-chain packing in a small protein is much
simpler and faster than in a large one. Baldwin (101) notes that this model
could be thought of as an extension of the jigsaw puzzle folding model (82a).
Here, the initial starting state is not fixed, and energetics coupled to a certain
amount of randomness determine the folding pathway.

Equilibrium Experiments—The Molten-Globule State

The molten globule (112) has yielded a great deal of experimental information
regarding the structure of intermediates during protein folding. This conforma-
tional state, an equilibrium folding intermediate induced under mild denaturing
conditions, consists of the following characteristics). I{ is less compact than

the native state.bj It is more compact than the unfolded state). I{ contains
extensive secondary structural) (t has loose tertiary contacts without tight
side-chain packing. Recently, increasing evidence supports the idea that the
molten globule may possess defined tertiary contacts (for a review see 113). It
has been argued that the molten globule state contains water molecules or is
“wet” (114), but an experiment by Kiefhaber et al (115) found that an unfold-
ing intermediate with molten globule attributes is dry. Strong support for either
case has yet to be found. Beyond these similarities, the molten globule con-
formations are very diverse among proteins and even among different molten
globules induced from the same protein (116, 117). For this reason, we discuss
each molten globule system individually.

CARBONIC ANHYDRASE The low pH form of carbonic anhydrase shows char-
acteristics of a molten globule (118). Like others, this molten globule resembles
a kinetic folding intermediate (119). Besides the molten globule, carbonic an-
hydrase provides evidence for an interesting second equilibrium intermediate
(120). Because this state occurs at higher concentrations of denaturant and is
less compact than the molten globule, the authors believe that it represents a
premolten globule. They also show that this intermediate still contains consid-
erable secondary structure and liken it to the burst intermediate seen in kinetic
studies (121, 122).
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a-LACTALBUMIN  The proteina-lactalbumin can produce two forms of the
molten globule under different conditions, both of which have been well char-
acterized (123, 124); the acid form is produced at low pH and the apo form at
neutral pH in the absence of calcium. Dissecting the protein to study only the
alpha helical domain, Peng & Kim (125) showed that at low pH this domain
contains enough of a tertiary fold that native disulfides could be found when
they oxidized areduced species in the molten globule state. Onthe basis of these
results, along with CD and NMR data, the authors believe that the molten glob-
ule is an expanded native state with no specific side-chain interactions. Further
investigation by the same group showed that the beta sheet domain is largely
unstructured in the low pH molten globule (126). Such a bipartite structure is
interesting because small-angle solution X-ray scattering showed a unimodal
distribution, which implies that the molten globule is roughly spherical in so-
lution (127). Using Raman optical activity measurements and studying both
a-lactalbumin molten globules, Wilson et al (117) also found that both molten
globules are native-like but that the apo form is less sensitive to temperature
denaturation since it is more ordered.

CYTOCHROMEC Cytochromec requires low pH and addition of salt to form

a molten globule (128). The salt screens repulsive electrostatic interactions
caused by the acidic conditions and allows the protein to collapse. This state
has been characterized as possessing an increased volume (129) and increased
compressibility (130). Jeng et al (131) have shown that the N- and C-terminal
helices are responsible for most of the molten globule’s secondary structure.
These two helices form during the early stages of folding (132) and contact
each other in the native structure (133). Two groups (134, 135) have shown
that packing interactions between these terminal helices are just as important to
the stability of the molten globule as they are to the native state. They mutated
residues important to the interaction of the N- and C-terminal helices and found
destabilization of both the native and molten globule states. This resultimplies
that the molten globule of cytochronceises some native packing contacts for
stability. As an overall picture, results from small-angle X-ray scattering (136)
suggest that the cytochronsis molten globule best fits a structure containing

a compact core with random coils extending from it.

MYOGLOBIN Depending on its environment, myoglobin in its apo form can
fold into a number of molten globular states. Like cytochranyapomyoglobin
collapses from a largely unfolded conformation at pH 2 into a molten globular
form upon addition of salt (137). This form of the molten globule is assumed to
be similar to the one at pH 4.2 in the absence of salt (138) and has been charac-
terized by Hughson et al (139). Their NMR analysis showed that the A, G, and
H helices arrange themselves in a native-like conformation. These helices also
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form during the initial stages of apomyoglobin refolding (140). In the folded
state, these three helices pack against each other with large hydrophobic con-
tact areas (141, 142), while independently they have very little helical content
(143-145). At pH 2 with sodium trichloroacetate, apomyoglobin forms another
molten globule state with more helical structure (146). This form is consid-
ered to be further along in the folding pathway (140). Studying both molten
globular forms, Nishii et al (138) found cold and heat denaturation of the two
forms, indicating that hydrophobicity contributes to the molten globules’ sta-
bility. Using small-angle X-ray scattering to measure radius of gyration, they
also showed that the molten globules were less compact. Hughson et al (143)
mutated residues important to the packing between the A, G, and H helices
of the pH 4.2 molten globule and found no perturbation of stability from acid
denaturation. In fact, overpacking the interface caused an increase in stability.
Approaching the problem from a different angle, Kiefhaber & Baldwin (147)
created mutations that increased the helical structure of the pH 4.2 molten glob-
ule. This mutant required higher concentrations of urea to become denatured
from a molten globule state, showing that increasing the secondary structure
stabilizes the molten globule.

So far, these studies suggest that myoglobin folds according to the hydropho-
bic collapse model, but work published this past year supports an alternate view.
The same lab that performed mutational studies on the pH 4.2 molten globule
repeated these experiments (148) using urea, instead of acid, to denature the pro-
tein. They found that the mutations at the A, G, and H helical interfaces desta-
bilized the molten globule as well as the native conformation. From their mea-
surements the investigators computed that packing interactions in the molten
globule are about half as strong as in the native state. Kataoka and coworkers
(149) presented solution X-ray data that suggest the pH 2 trichloroacetate-
stabilized molten globule consists of a single hydrophobic core surrounded by
a disordered polypeptide chain. The evidence comes from the calculation of a
distance distribution function. The trichloroacetate-stabilized molten globule
at pH 2 showed a bimodal distribution, which is indicative of two different do-
mains in this molten globule. Since this apomyoglobin contains only a single
folding center, the authors attributed the second mode in the distribution to the
unfolded portions of the chain. Native holomyoglobin and apomyoglobin, as
well as other molten globules [cytochrorag€149) andx-lactalbumin (127)],
possess unimodal distance distribution functions characteristic of a globular
protein with a generally spherical shape in solution. Altogether, these experi-
mental results lend support to the nucleation model.

Kinetic Experiments

While the previous studies looked at stable, equilibrium intermediates, the
following experiments analyzed transient, kinetic intermediates found during
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refolding or unfolding of the protein. Using methods such as CD or NMR
coupled to stop-flow techniques to monitor the folded state of the protein,
these experiments usually find a quick burst phase of folding during which
intermediates cannot be detected (121, 122). After this initial burst, there is a
slow phase while the molecule searches for its native state.

As discussed above, an early kinetic intermediate of both cytochcamd
apomyoglobin has been found that contains characteristics similar to its re-
lated molten globule (131, 140). Investigators have found the same in other
systems. For ribonuclease A, Yamaguchi et al (150) found a negative change
in volume as the protein went from a folded to an unfolded state by measur-
ing the Gibbs free energy difference during pressure denaturation. Refolding
of the solvent-denatured protein produces two identifiable intermediates: The
near-native intermediate requires a conformational change due to a proline iso-
merization to reach a completely folded conformation (151-153). The other
intermediate occurs early in refolding and resembles a molten globule state
(154). Studies of the volume change upon refolding (155) and unfolding (156)
of ribonuclease A indicate that an intermediate possesses an increased volume
akin to a molten globule, while NMR analysis provides evidence that an in-
termediate has features of a dry molten globule (96). Further investigation
of the early intermediate (157) corroborates results from equilibrium folding
studies. Because the authors discovered that the early intermediate is able to
bind inhibitor, possesses hydrogen protection factors similar to the near native
intermediate, and has a developgdheet, they believe that this intermediate
also contains significant tertiary structure.

Using staphyloccocal nuclease, Vidugiris et al (158) found that pressure de-
naturation formed a transition state with a positive activation volume (basically
an increase in volume of the protein/water system). The authors liken this
swollen intermediate to a molten globule state. In another study looking at
apomyoglobin unfolding, Barrick & Baldwin (159) describe an intermediate
state with developed helices, no strong tertiary structure, and a Gibbs free energy
closer to the unfolded state than the native. From these results, they conclude
that side-chain packing is responsible for most of the stability of the native state.
This apomyoglobin intermediate can be thought of as the initial burst state, seen
in much of the kinetic work (121, 122), in which the protein is compact and
yet contains secondary structure. As discussed above, Uversky & Ptitsyn liken
the burst intermediate to a premolten globule state (120). Eliezer et al (160)
provided a more general view of the solution structure of apomyoglobin’s fold-
ing intermediate. Their small-angle X-ray scattering showed that the initial
folding intermediates at 20 and 100 ms are as compact as the molten globule
and almost as compact as the refolded native state. In a quite recent analysis
of dihydrofolate reductase refolding, Hoeltzli & Frieden (manuscript submit-
ted) monitored the resolved resonances of 6-19F-tryptophan and found strong



562 LEVITT ET AL

evidence that the search for the correct residue packing causes the slow rate-
limiting step of refolding. In contrast, new techniques able to look at the forma-
tion of the burst phase intermediate suggest that it contains secondary structure
and residues with native tertiary contacts (for a review see 161). Although
these results are still preliminary, they provide support for nucleation events in
folding.

Conclusions from Experiment

Analyses of protein crystal structures (6, 20, 25), as well as solution measure-
ments (82), show that proteins in their native conformations possess tightly
packed cores. Experimental results are not as clear as to when or how this
well-packed core arises. It is clear that proteins follow more than one folding
pathway; however, for all pathways, collapse occurs early. With the caveat that
the data come from a limited set of proteins and experiments, we can construct
the following general folding progression. From a denatured state, a protein
collapses into an initial burst phase intermediate (or for the small, fast-folding
proteins, folds directly to the native state). This proposed premolten globular
state contains a certain amount of secondary structure and tertiary contacts, but
the protein’s overall topology is incomplete. Next, development of the general
chain topology occurs. As yet, not all the side-chains have packed well. In
the end, the protein attains its native conformation with a tightly packed core.
Simulations of folding (for a review see 162) as well as examination of hinge
motions (72) and mutational studies (86—89) support the idea that packing can
drive the last step in folding. Kinetically trapped intermediates could occur at
any point along this pathway. Although still speculative, this picture does point
out that both nucleation and hydrophobic collapse play important roles in pro-
tein folding. It is uncertain exactly where and to what extent either affects each
stage of the folding process. In any case, experiments show that a well-packed
core is essential to achieving the native state during protein folding.

MODELING THE PACKING OF SIDE-CHAINS

Early Work—Defining the Problem

The difficulty of ab initio protein structure prediction originates from the enor-
mous number of three-dimensional conformations that a chain of amino acids
can adopt. A 100-residue protein has approximately 400 degrees of freedom:
Eachresidue has two main-chain single-bond torsion anglasdg, and on av-
erage two side-chain single-bond torsion angielsandy 2 (small side-chains
have ong¢ angle; large ones have four). Crudely assuming that a torsion angle
accuracy of 10is sufficient, each residue has 366 = 1296 independent

¥) main-chain conformations, giving a main-chain combinatorial complexity
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0f 12969°° = 10°!L, Making the same assumption for the two side-chain torsion
angles also gives a complexity of3t& The two conformational spaces are the
same size. However, the main-chain torsion angle errors propagate throughout
the protein and are sequentially amplified. Side-chain angle errors only affect
the local conformation and propagate less directly.

In 1987, Ponder & Richards (163) pointed out that using the criterion of
“good packing” against the rigidly fixed native main-chain rules out the majority
of side-chain rotamer conformations for residues in core regions. Side-chain
rotamers, which are a tabulation of frequently observed conformations, have
been proposed for many years (164), but Ponder & Richards (163) reduced
these to a set of 67 different conformations that could account for most side-
chains observed in real proteins (assuming an angle tolerane2®j. While
enumeration of these conformations is computationally feasible over a few
neighboring residues, the task of enumerating all possibilities for each residue
in a 200-residue protein is computationally intractable. (Specifically, there are
on average 3.35 rotamers per amino acid (67/20), and this give¥%=350°°
combinations.)

One of the first attempts to actually predict the side-chain conformation given
the correct conformation for the main-chain involved manual modeling (165).
Working with the known X-ray conformation of the main-chain of flavodoxin,
this test study yielded a final side-chain prediction error of ARMS (root
mean square). Nevertheless, many large aromatic side-chains deep within the
core of the protein were very badly predicted. This in turn led to an error
propagation cascade throughout, causing satisfactory prediction for only 30—
40% of the side-chain conformations.

Several investigators have performed local energy minimization of a very few
residues in the field of otherwise fixed protein atoms (166—168). By restricting
interest to situations where only a limited number of side-chains were replaced
(e.g. by assuming that conserved residues remain in similar conformations when
two sequences have very high sequence similarity), these methods effectively
focused their efforts on neighboring residues. Their success suggested that, if
the problem could be separated into small sets of residues that interact little
with each other, the daunting combinatorics of the side-chain packing problem
could be surmounted.

A Possible Solution?

In 1991, four groups working independently each discovered a method that
naturally broke the combinatorial problem into manageable pieces (169-172).
When a protein is stripped of all its side-chains, and the native main-chain is
used as arigid constraintto repack all the side-chain atoms, these varied methods
could achieve an accuracy of 1A8RMS error over all side-chain atoms.
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These four methods all rely on the van der Waals energy to eliminate bad
side-chain arrangements. They differ very much in how they generate possible
side-chain conformations and how they choose between them. The method
of Lee & Subbiah (169) utilizes no database information, making it the most
physically based method of the four. Side-chains are allowed to explore torsion
angles in 10intervals, and simulated annealing is used to optimize the arrange-
ment of neighboring side-chains by minimizing the van der Waals energy. Two
of the methods use a set of rotamers taken from known protein conformations
and optimize an energy function [which can include hydrogen-bonding and
electrostatics (171)] using Monte Carlo (MC) minimization (170) or a genetic
algorithm (171). The fourth method (172) relies more heavily on known protein
structures and the surprising finding of Jones & Thirup (173) that almost all seg-
ments of main-chain conformation recur in proteins. In this method, van der
Waals packing energy is used to select plausible segments of known protein
structure, borrowing the side-chain conformation. Rather than optimizing the
side-chain conformations, it introduces some variability in selecting chain seg-
ments, averages atomic coordinates to enhance the signal from the common con-
formations, and then regularizes the stereochemistry with energy refinement.

Since allthese methods primarily rely on only extremely simple van der Waals
packing in their energy functions, a better assay of accuracy is the predicted error
in the well-buried side-chains. Considering only the half of all residues that
are less solvent-exposee 30% surface area accessible to the solvent (174)]
significantly improves the prediction accuracy. The only ab initio method,
using simulated annealing to minimize the van der Waals energies in a finely
discretized torsional space (1for the x angles), was accurate to 1.BRMS
(169). The genetic algorithm approach (175, 176) that combinatorially mates
rotamers selected from a 109-member rotamer database (171) was accurate to
1.54A RMS. The MC energy minimization over a similar rotamer database was
accurate to 1.8. RMS (170). The segment-matching method was accurate to
1.37A RMS, in spite of its use of only the nativeaositions rather than
the entire main-chain. This success by four different methods that all rely on
packing to eliminate bad choices proved the foresight of Ponder & Richards
(163) was indeed correct.

Recent Refinements—A Classification

Over the past four years, a flood of new methods, as well as improved versions
of the early ones, have been reported. The best of these, like those of Lee (177)
and VAsquez (178), consistently break thd RMS barrier over a large set of
proteins, while a few others (179—181) hover between 1 and RMS error.

Of the remaining recent methods, all report average errors of less thaA 1.45
RMS over a test set of 10—60 proteins (182—186).
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The four methods discovered independently between 1991 and 1992 employ
surprisingly different approaches. Classifying these and the newer methods
helps highlight whatis necessary for successful prediction. Methods that predict
side-chain conformation from a known backbone conformation involve two
steps: &) choosing a set of possible conformations for each side-chainband (
choosing the conformations of each side-chain to optimize packing for a given
fixed main-chain.

POSSIBLE CONFORMATIONS The set of possible conformations is either know-
ledge based (taken from known three-dimensional structures of proteins) or
defined by simple geometrical considerations. Most methods are knowledge
based (170, 171, 178-180, 183, 187), following the use of rotamer libraries
by Ponder & Richards (163). Variants in both the size and content of these
libraries have been attempted (180, 187-189). The latter include some studies
that use a rotamer set customized to match the local main-chain of the particular
side-chain. (180, 189). Others (172, 181, 190) take one or a small number of
fragments from known protein structures using a local fit to the main-chain
to choose fragments. A few investigators (169, 177) disregard these database
approaches and instead vary the side-chain single bond torsion angl€es in 10
increments.

OPTIMIZING PACKING Most methods use some type of search strategy to find
the combination of side-chain conformations that optimizes packing. Good
packing is generally assumed to correspond to a favorable value of the van der
Waals energy, with its strong steric repulsion and weak long-range attraction,
but more complicated energy terms are sometimes included (171). Of greater
importance than the energy is the search method used to find the best combina-
tion of side-chain conformations. Simulated annealing is surprisingly effective
at finding the optimal packing corresponding to side-chain arrangements found
in native proteins (169, 186, 191), as is the related MC minimization method
(170). Genetic algorithms have also been used (171, 192). More elaborate
search methods have also been used, such as “dead end elimination” (184,
193) and the A algorithm (194), and these have been combined with other
heuristics (187, 193). More physically based methods search with MD simu-
lations (179, 180, 189, 192, 195), self consistent mean-fields (177, 183), and
Gibbs sampling utilizing heat baths (178). One method (172) simply pastes
together segments found in known proteins, subject to their packing well into
the growing structure.

AB INITIO METHODS  Only a handful of methods that do not rely on protein-
derived knowledge have worked well. One that relies on MD “annealing” of
successively added atoms beyond th &oms enjoyed some success (196)



566 LEVITT ET AL

but has since been reported to be inferior to rotamer-based methods (192). A
related method of annealing “sprouted” side-chain atoms, again using MD,

has only been reported to work on small peptides (197). The most successful
ab initio methods (169, 177), mentioned above, rely on simple van der Waals
energy in conjunction with complete sampling of torsion angle space.

Assessing the Accuracy

RANDOM OR WORST RMS The success of these methods must be put into con-
text by considering the RMS expected if all side-chain conformations vagre (
randomly predicted ol predicted as badly as possible. The random RMS was
estimated to be 3.4 and the worst RMS to be A for a 100-member rotamer
library (169, 170). Later work gave similar random RMS betweenf3zd
3.5A, depending on the size of the rotamer library (187). Many studies have
answered the opposite question of how well the best rotamer-based prediction
can represent the native structure: RMS values range from about fab

the large 624-member rotamer libraries (170, 178, 179, 187) td b the
original 67-member rotamer library (163).

EXPERIMENTAL ACCURACY The answer to the question “What error value
corresponds to an excellent prediction?” can be found in a rotamer-independent
manner. It has long been known that when X-ray structures of the same protein
are determined by two different laboratories or in two different crystal forms,
the main-chain atoms differ by about A5RMS (198, 199). The side-chains

can differ by as much as 15RMS (199), but for the more buried side-chains
not involved in crystal contacts, the difference can be upAo0(198). Judged
against a side-chain RMS of S&being random and a RMS ofA being the

best possible, the fact that automatic methods routinely achieve values as low
as 1.254 RMS suggests that the side-chain packing problem may be solved.

TORSION ANGLES Another measure of fit is the percentage of side-chains
for which the torsion angles are correctly predicted. For the buried residues,
the better side-chain packing algorithms usually predict correctly (withip 40
90% of they 1 angles and 80% of(l, x2) angle pairs (169, 177, 178, 181,
187). When all residues are considered, these figures drop to 80% and 70%,
respectively. The percentage correct obviously depends on the match criteria:
With stricter criteria (within 20 or 30°), these values are reduced by about 10%
(170, 172, 181, 200). These predicted values must be compared with the best
that can be achieved by rotamer libraries. Allowing a deviation of less than
40 from the angle derived from X-ray information, even the smaller rotamer
libraries can often correctly capture the native side-chain conformations for
some 95% of ther1 angles and 90% of thec(, x2) pairs (178). With the
stricter criterion of being within 200f the angle from X-ray structures, these
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values drop to 85% and 75%, respectively (200). It is encouraging that for the
buried side-chains, the success rate of prediction is only 10% less than the best
possible with rotamer libraries.

PREDICTIVE SUCCESS In terms of claimed accuracy, the ab initio method of
Lee (177) and the rotamer-based method aé§tiez (178) are marginally su-
perior to all others. Lee has published predictions prior to experimental X-ray
determination that have proved to be accurate. He has reported RMS errors of
0.68-0.89A in side-chain prediction for T4 lysozyme mutants (201), 1Aldn
A-repressor mutants (202), and 0RRMS on polymeric HLA alleles (203).
While some caution should be expressed since these predictions are only for
a few buried residues, the results do suggest that the best side-chain packing
methods can be useful.

Why Is This An Easy Problem?

Since it appears that the packing of side-chains can be well predicted, some
investigators have suggested the problem is not really combinatorial in that the
allowed side-chain conformations depend on the local main-chain environment
(180, 187, 204). Methods that choose the side-chain conformation based only
on the local main-chain are about 20% less accurate than methods that allow
full combinatorial packing (178, 183). This remaining 20% in accuracy can

only be obtained by considering combinatorial packing (178, 180, 183, 187).

Main-Chain Movement

Itis becoming increasingly clear that the assumption of a fixed main-chain dur-
ing combinatorial repacking is not generally valid. Attempts have been made
very recently to relax this assumption. A clever method, which allows main-
chain and side-chain flexibility, has been applied to the special case of repeating
coiled-coil structures; it is able to predict the buried side-chains almost as accu-
rately as when the perfect main-chain is available (195). Koehl & Delarue (205)
have applied the mean-field approach, so successful for side-chains (177, 183),
to the main-chain with promising results. Wilson et al (179) have proposed the
use of rounds of alternating side-chain packing onto a fixed main-chain and full
MD minimization. The multiple copy and mean-field approaches also appear
to be particularly well suited to allowing main-chain shifts (183, 206, 207).

GETTING TO THE ENDGAME

How Close Is Close Enough?

In order to get to the endgame, one needs a backbone that is very close to native.
How close is close enough? The question of whether packing optimization
schemes can model side-chains accurately upon fixed imperfect backbones has
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been under intense scrutiny. Many studies have considered the repacking of
correctly aligned target sequences onto fixed homologous template structures,
employing the same algorithms used when the ideal backbone was provided
(168,179, 180, 183, 188). Recently, ina more systematic study that spanned the
full range of possible sequence identities within certain protein families, Chung
& Subbiah (208, 209) observed a monotonic decrease in buried side-chain
prediction accuracy as the sequence identity diverged and backbone deviation
increased. They estimate that when the template is more tAaRMS error

from the native backbone (corresponding#5% sequence identity), the side-
chain prediction accuracy approaches the random expectation of 3ARBIS

(169, 187, 209).

In the absence of general methods that accommodate movable backbones in
side-chain prediction, it appears that backbones withdnRVS of the native
structure are required for accurate modeling. Backbones as accurate asthese are
sometimes available if the structure of a close sequence homologue is known
and the two sequences are correctly aligned. In the general case, how is it
possible to obtain folded backbones that are sufficiently accurate?

Threading Methods

In one approach, known as threading or fold recognition, a new sequence is
aligned upon a known three-dimensional structure, and each sequence-structure
alignmentis scored via an energy function. Threading has identified compatible
folds that are undetectable by conventional sequence alignment methods (210,
211). However, success in recognizing a related fold does not imply success in
building an accurate model using the related fold as a template. The alignment
of the new sequence on the known backbone has to be almost perfectly cor-
rect to get the required é—accuracy (adjacent residues are about dpart).
Results from the threading predictions illustrated the various shortcomings of
available alignment and/or scoring methods (212). Moreover, even given per-
fect alignments, backbones generated by threading methods may not be useful
if the aligned sequences show less than 30% identity (208). Threading special-
izes in finding such folds, so it is unlikely to provide acceptable backbones for
standard side-chain prediction methods, even if the alignment were optimal. In
any case, at the present time many proteins of interest are new folds for which
there is no threading target. Hence, we do not regard threading in its current
form as a viable pathway to the endgame of folding.

Ab Initio Folding

In ab initio methods, a fold for the new sequence is generated without directly
using the known fold of any other protein. This is accomplished eitheahpy (

a broad and even sampling of conformational space by an energy-independent
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method, followed by screening of the resulting candidate folds by an energy
function or @) minimizing the conformational energy of a polypeptide as it
folds through an approximately continuous conformational space. In either
case, the level of detail included in the structural representation must balance
the computational tractability and geometric accuracy of the model. Lattice
models can be computationally feasible, even to the point of enumerating folds
exhaustively (213), but such folds sacrifice secondary structure features and are
generally less accurate thadBRMS. Off-lattice discrete models, such as those
possessing six states per residue, can reproduce the native backbAriRNE?

(214), but generating such folds exhaustively is beyond the power of today’s
computers (a chain of length 100 ha¥%= 107° folds). For minimization
methods, complex lattice and discrete representations hinder the search for the
energy minimum because they make the energy landscape more rugged and
increase the number of moves necessary to traverse the conformational space.
In spite of these limitations, ab initio folding approaches have made progress,
routinely achieving structures with accuracy up~td A RMS error (215-

227). Other methods, especially those that use experimental secondary structure
constraints, fare even better. In the next section, we review approaches to ab
initio folding that have produced folds within 2A4RMS of the native structure.

Discrete-State Models and Energy Functions

A simple discrete-state model has been described by Park & Levitt (228). Their
optimized four-state off-lattice representation is able to build backbones within

2 A RMS from the native backbone. Even with this model, exhaustive enu-
meration is impossible, as® = 107 is intractable. If one enforces the native
secondary structure as an external constraint, this model has no more than about
200,000 folds for each protein. Thisis amanageable number of folds that evenly
and broadly sample phase space while providing candidates that take folding
into the end-game.

Providing such candidates in itself is not useful unless an energy function can
successfully distinguish the native-like folds from the entire set of folds gener-
ated. This issue presents two questior&g:dan energy functions distinguish
between the near-native folds and those that are grossly misfoldg@arf the
energy functions distinguish between the native structure and the near-native
folds? The first question depends as much on the quality of the representation
as on the effectiveness of the energy function; i.e. energy functions are useful
only in the context of a representation capable of generating suitably near-native
structures. The second question asks whether or not the energy function can tell
a true native fold from the best near-native decoys; it thus assesses the resolu-
tion of the function and indicates whether further minimization of the function
can in principle drive the conformation towards a more native-like state.



570 LEVITT ET AL

Park & Levitt (229), using a basis set of six energy functions, report that the
native fold can be recognized very effectively if one combines energy functions
that stress complementary factors, such as nonspecific hydrophobicity (a gen-
eral compacting force) and residue-specific pairings. Furthermore, the best of
the native-like folds usually rank very high in the energy-sorted list. On aver-
age, the best combinations of energy functions place the native-like folds in the
top 1% of the score-sorted list (229), although there are always many grossly
misfolded decoys with energies more favorable than some of the near-native
folds. Therefore, if one were to apply an effective energy function as a screen
of the entire decoy set (for example, by taking the top half of the energy-sorted
list), the concentration of the near-native folds in the high-scoring subset would
increase, but the highest-scoring folds in the subset would not all be near-native.
In other words, RMS deviation and energies are not highly correlated in the
RMS range explored in this study (229). More encouraging is that the best
energy functions typically score the native fold more favorably than all the
decoys, including those within & RMS.

Energy Minimization and Search Strategies

Methods that use energy minimization to move through phase space have shown
promise in folding to near-native conformations. Recent work by Mumenthaler

& Braun (230) describes a self-correcting distance geometry method for pre-
dicting the tertiary arrangement of small globular helical proteins. This method,
like the one by Park & Levitt (228, 229), assumes that the helical segments are
known in advance; only thep( ) dihedral angles of loop residues are ad-
justable (though constrained to combinations that are commonly observed in
the database for each residue type). First, the method predicts whether each
residue is solvent-exposed (“outside”) or buried (“inside”), using an algorithm
that exploits multiple sequence alignment information (231). Upper limits for
the distances between the three types of residue pairings (inside-inside, outside-
outside, and inside-outside) are calculated as a function of the size of the protein.
The minimization engine then applies these distance constraints in a clever al-
gorithm that dynamically adjusts constraints over each iteration of the structure
generation cycle. Thus, ratherthan having an energy function per se, the method
relies ona“target function” that depends on the predicted constraints. The struc-
tures with the fewest constraint violations tend to cluster withdFRMS of the
experimentally determined structure, although only the helical residues were
included in the RMS calculation. The final predicted structure, taken as the
average structure in the low-violations cluster, can be accurate th R4S

of the native structure. Because the constraints are adjusted to the structures
during the procedure, there is no path-independent energy function available
for further minimization. Overall, six out of eight test proteins converged to
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near-native predictions<3 A RMS error), but none were within &. Never-
theless, this method can be a useful tool for taking folding into the end-game,
assuming that secondary structure prediction methods continue to improve.

A similar minimization approach was developed by Sun et al (232). Like
the two procedures discussed above, this method also begins with the known
secondary structure elements in order to reduce the conformational space to be
searched. Their conformational search engine is two tiered and is powered by
a genetic algorithm that operates on a string of paiged/() dihedral angles
describing the conformation of the protein. First, mutation and crossover op-
erations are performed at randomly chosen rotatable residues (i.e. those not in
secondary structure). Mutations are random selections from a set of dihedral
angle pairs derived from the structure database. The second step refines the
search by perturbing randomly chosen unconstrained torsion angles slightly in
order to probe the local energy landscape for minima. The selection method is
an energy function that models the hydrophobic interaction (1) and is an exten-
sion of the simple hydrophobic-polar models of Dill and coworkers (233). The
results were encouraging. Out of ten test cases, four of the lowest-energy mod-
els were within 4 RMS error, but none of the minimized structures achieved
2-A accuracy. Moreover, many of the native structures had energies much
worse than the minimized structures, thus limiting the utility of their highly
simple energy function in the endgame.

Let us summarize the strengths and shortcomings of the ab initio methods
discussed above. The results of Park & Levitt (228, 229) suggest that an
effective energy function (of which there are several) yoked with the proper
search strategy can drive near-native folds towards the native fold. However,
the same function cannot reliably recognize near-native folds, even the best
ones, from the entire set of decoys. For near-native structure generation, the
minimization method of either Mumenthaler & Braun (230) or Sun et al (232)
might be a better alternative. However, these methods are not fail-safe, for they
do not always converge near the native structure.

In the ab initio methods discussed above, folds were generated either ex-
haustively (229) or from random tertiary arrangements (230, 232). As close
as these methods can get to the native fold, their accuracy is hampered by the
reduced complexity of the model, the energy functions that drive the folding
of the chain, or both. In the next section, we address these concerns. Energy
functions are challenged to recognize native folds from all-atom representations
very close in conformation to the native fold.

Discriminating Native from Near-Native Conformations

Akeyrequirement of an energy function able to drive the search towards the end-
game is that the native conformation have a lower energy than the near-native
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conformations. Such sets of near-native conformations can be generated by
deforming the experimentally determined structures using methods such as
MC and MD simulations. Energy functions are then applied to these test sets
in order to assay their discrimination power.

The method developed by Wang et al (234, 235) was the first attempt at
recognizing the native fold from large decoy sets of near-native and compact
structures. This method is based on the atomic solvation potential of Eisenberg
& McLachlan (236), grouping atoms into 17 chemically related “molecular
fragment types,” each with its associated solvation parameter. These parame-
ters were obtained by a training algorithm that maximizes the solvation energy
difference between the native and a large set of compact nonnative structures
generated by MC and MD simulations (235 and references therein). The sol-
vation parameters were then used to evaluate native structures of a separate test
set of decoy structures generated by MC and MD. The MC-generated structures
were selected to be compact (the radius of gyration did not exceed that of the
native structure plus 5%) and within predetermined RMS deviation from the
native structure (up to 8 maximum). The MD simulations were carried out
at room temperature (300 K) and high temperature (500 K); the average RMS
errors for the 300-K and 500-K simulations were A RMS and 8.0A RMS,
respectively. More than 8200 nonnative MC and MD decoys were furnished for
each of 11 test proteins, of which only 7 on average were misrecognized as na-
tive (having a more favorable energy score than the experimentally determined
structure). The solvation energy roughly correlated with the RMS deviation
between the native and decoy structures. All of the misrecognized decoys, or
false positives, were structures very close to the natideX RMS). Wang et al
(234) also demonstrated that their method compared favorably against a bat-
tery of standard energy functions: MD force fields, statistically derived contact
potentials, three-dimensional profile methods, knowledge-based potentials of
mean force, and others (188, 210, 237-242).

In a related study, Huang et al (243) explored the ability of a very simple
hydrophobic contact function (244) to recognize near-native decoys generated
by MD simulation in solution at room (298 K) and high (498 K) temperatures.
Five small proteins formed the test set. Overall, the average RMS deviations
from the native structure were 146(at 298 K) and 4.1 (at 498 K). As in the
earlier studies (234, 235, 243), native structures were readily identified from
the sets of decoy structures: There were only 330 false positives out of 10,000
(combined room and high temperature runs for the five proteins). Likewise,
the energy function is strongly dependent on the extent to which the structures
are deformed: Only one false positive exhibited an RMS deviation more than
2 A from the native structure (243).

What is the impact of these two studies on how the endgame is played? Both
appear to be successful at identifying native folds from compact, near-native
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folds, aquality that other functions apparently lack (234). Huang etal (243) note
that the decoy set used in their study is perhaps a more rigorous test, given the
lower RMS deviations produced from MD simulations. Indeed, demonstrating
that simple energy functions can discriminate native from near-native structures
inthisRMSrange (O—ﬁ) isimportant. Giventhatabinitio methods can provide
folds that are quite close to the native (arour Jtis important to use methods
such as MC and MD simulations to probe the relationship between energy and
molecular conformation within & RMS from the native. However, even more
challenging near-native test sets are needed to assess the true discrimination
power of existing potentials. High-temperature MD simulations (234, 235,
243) and the MC simulations of Wang et al (235) compromise the integrity of
the secondary structure and loosen the packing of the tertiary structure. Even
the 298-K MD simulations in solvent by Huang et al (243), which depart from
the native by an average of only 136RMS, undergo a 2—3% increase in the
radius of gyration. A function that stresses hydrophobicity (i.e. nonspecific
compacting force), such as the one by Huang et al (243), is sensitive to minute
changes of this type. Corroborating evidence is seen in recent work by Levitt
and coworkers, who have tested the performance of 18 energy functions on this
set of MD structures (245). This study indicated that other energy functions
emphasizing hydrophobicity also excelled at native fold discrimination.

Although RMS deviation imperfectly serves as a coordinate along the folding
trajectory, it is encouraging nonetheless to confirm its strong correlation with
energy functions (243). Although neither study attempted to minimize their
respective energy functions using near-native structures as starting points, we
challenge future studies to progress along these lines.

CONCLUSIONS

Proteins are close-packed both in the solid state and in solution. In fact, they are
probably the most tightly packed form of organic matter. This close-packing
is related to function in that it provides a rigid core on which to arrange cat-
alytic side-chains in enzymes. Loose-packing is often associated with flexible
hinges and conformational changes, whereas tight packing correlates with bet-
ter stability. How such tight-packing arises in protein folding is still unclear,
although there has been enormous progress in characterizing the packing of
partially folded intermediates. However it arises, this close-packing limits the
number of possible arrangements of the side-chains, which has led to meth-
ods capable of predicting side-chain packing on a known, rigid main-chain.
These same methods are applicable to homology modeling provided the main-
chain “borrowed” from the related structure is close enough (withi).2If

no homologous structure is known, other methods can sometimes generate
main-chains that are almost close enougB.(SA RMS). It is crucial to have
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an energy function that can recognize the folds that are closer to the native
structure.

Throughout the review, we have argued that packing forms a strong con-
straint on protein structure, severely restricting the number of possible struc-
tures. However, in the earlier stages of the folding process, particularly those
relating to the formation of the overall fold, it is believed that packing is much
less important. This theory has been borne out in experimental studies demon-
strating how tolerant a fold is to many random mutations (89, 246-248). It has
also been substantiated in theoretical studies that show how surprisingly easy it
is for a protein of random sequence (a “random hetropolymer”) to close-pack
in an approximate sense (249-251).

A number of challenges lie ahead. Perhaps the greatest is to understand how
a protein close-packs its residues during the latter stages of folding. The early
stages are generally considered to be dominated by nonspecific hydrophobic
interactions. Another challenge is to understand how packing affects function:
Ifloose-packing is essential for function, it should be possible to design proteins
that are too stable to function as catalysts. In the area of computer simulations,
we expect progress in the consideration of main-chain flexibility, derivation
of strongly discriminating energy functions, and generation of diverse sets of
decoy folds. For structure prediction, the problem of packing side-chains using
a near-native backbone seems almost completely solved. The challenge now
is to generate main-chains sufficiently close to the native backbone to allow
packing algorithms to be successful. It also seems likely that designing small
helical proteins will be easiest, and their detailed structure could be predicted
over the next five years!

Visit the Annual Reviews home pagat
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