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Abstract 

 

By its very nature, genomics produces large, high-dimensional data sets that are well 

suited to analysis by modern machine learning approaches. Here we explain some key 

aspects of machine learning (i.e. its ability to construct complex decision rules, to 

integrate heterogeneous data, and to generalize in a principled fashion from observed 

examples) that make it useful for genome annotation, with illustrative examples from 

the recent publications of the ENCODE Project Consortium. 

 

Introduction 

 

The complete sequencing of the human genome marked an important milestone in 

modern biology [1, 2], but it also produced a whole new set of challenges in 

elucidating the functions and interactions of different parts of the genome. A natural 

first step to tackling these formidable tasks is to construct an annotation of the 

genome, which is to (1) identify all functional elements in the genome, (2) group them 

into element classes such as coding genes, non-coding genes and regulatory modules, 

and (3) characterize the classes by some concrete features such as sequence patterns. 

Over the years many experimental and computational methods have been invented to 

accelerate this annotation process. Among the popular computational methods are 

those based on the concept of machine learning (Box 1). Originally a branch of 

artificial intelligence, machine learning has been fruitfully applied to a variety of 

domains. The basic idea of machine learning is to construct a mathematical model for 

a particular concept (i.e., an element class in the case of genome annotation) based on 

its features in some observed data. The model can then be applied to identify new 

instances of the concept in other data [3-5]. 

 

In this review, we discuss some key properties of machine learning that make it useful 

for genome annotation, using some classic problems for illustration. We also describe 

some examples in the latest work of the ENCODE Project Consortium [6] to highlight 

some recent trends. We focus on the identification and classification of genomic 

elements, and do not go into the details of machine learning approaches to functional 

annotation, such as the predictions of gene expression, gene functions and protein 

interactions. Also, due to limited space, we can only include a small portion of the 

related references in the literature. Readers interested in the application of machine 

learning in some major classes of genomic elements are referred to the corresponding 

reviews listed in Table 1. This review is intended to serve as an introduction to 

machine learning and its use in genome annotation for a general audience, requiring 
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no prior knowledge in these topics A more general description of the use of machine 

learning in bioinformatics can be found in Baldi and Brunak, 2011 [4]. More formal 

discussions on machine learning can be found in various text books [5, 7, 8]. An 

overview of experimental and computational genome annotation approaches can be 

found in some other reviews [9, 10]. 

 

Genomic functional element classes Reviews 

Protein-coding genes [11-13] 

Non-coding RNAs (ncRNAs) [14-16] 

 MicroRNAs (miRNAs) [17, 18] 

Transcript splicing isoforms [19, 20] 

Regulatory elements  

 Protein binding sites/motifs [21-24] 

 Cis-regulatory modules [25, 26] 

Table 1: Reviews on machine learning methods for identifying some major classes of 

genomic elements 

 

Box 1: A primer on machine learning 

 

We first consider a basic setting of machine learning for binary classification, and 

later describe variations of it commonly encountered in genome annotation. Suppose 

we want to identify enhancers in a genome. We divide up the genome into a list of 

genomic regions X = (x1, x2, …, xN). Each region xi has a corresponding binary label 

yi, where yi=1 if xi is an enhancer, and yi=0 if not. Each region is described by a set of 

features xi = (xi1, xi2, …, xim). For example, xi1 could be the evolutionary conservation 

of xi among several close species, xi2 could be the average ChIP-seq [27, 28] signal of 

the active enhancer mark H3K27ac (histone 3 lysine 27 acetylation) among the bases 

within the region from a certain experiment, and so on. The goal of machine learning 

is to find a function f (called a model) such that f(xi) is close to yi, i.e., to tell if a 

region is an enhancer from some observed features alone. 

 

To find a suitable f, we need to (1) Decide on a mathematical form of f; (2) Find 

known positive and negative examples that can help estimate the parameters of f; and 

(3) Actually estimate the parameters of f, in a way that it likely predicts the labels of 

regions accurately, even for regions of which the corresponding labels are unknown. 

 

For task 1, many families of f and their corresponding algorithms for learning the 

parameters have been studied. The popular ones include artificial neural networks 
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[29], Bayesian networks [30], decision trees [31], k-nearest neighbors [32], random 

forests [33] and support vector machines [34]. They differ in the form and complexity 

of their models. Some examples are shown in Figure 1. Predictions are made based on 

the mathematical form of f and the parameters learned from the examples, such as the 

location of orientation of the decision surface of a SVM (Figure 1a). 

 

 

Figure 1. Some commonly used machine learning methods. For illustration, each genomic region is 

represented by a circle and described by two features. (a) A support vector machine (SVM) forms an 

affine decision surface (a straight line in the case of two dimensions) in the original feature space or a 

vector space defined by the similarity matrix (the kernel), to separate the positive and negative 

examples and maximize the distance of it from the closest training examples (the support vectors, those 

with a perpendicular line from the decision surface drawn). It predicts the label of a genomic region 

based on its direction from the decision surface. In the case a kernel is used, the decision surface in the 

original feature space could be highly non-linear. (b) A basic decision tree uses feature-parallel decision 

surfaces to repeatedly partition the feature space, and predicts the label of a genomic region based on 

the partition it falls within. (c) The one-nearest neighbor (1-NN) method predicts the label of a 

genomic region based on the label of its closest labeled example. In all three cases, the areas predicted 

to be positive and negative are indicated by the red and green background colors, respectively. 

 

Task 2 could be quite tricky for some element classes (see the corresponding 

discussions in the main text). Task 3 can be further sub-divided into two sub-tasks, 

that of finding a model to fit the training examples, and of ensuring the model to be 

able to predict the labels of unseen regions correctly. The first sub-task can be 

achieved by finding parameter values of f that minimize a loss function, such as the 

sum of squared errors of the n examples,            
  

   . Since the parameter 

values are determined according to the observed data, the process is described as 

“learning” a model from the data. The second sub-task is achievable only if one 

makes certain assumptions about the models and examples. It is usually assumed that 

the observed examples and unobserved instances of each type of functional elements 

share the same distribution of feature values, and that when two models can fit the 
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observed examples equally well, the simpler one (e.g., one with a smaller number of 

parameters or a smaller total magnitude of the parameter values) is likely to 

generalize better to unobserved instances. A model too specific to the observed data, 

usually characterized by a high complexity of the model, may over-fit the data, i.e., 

capturing patterns that are only true for the observed examples. To avoid over-fitting, 

some machine learning methods control the complexity of the models by model 

pruning [35] or regularization [3], with the observed examples fitting less well to the 

model as a tradeoff. Some other methods produce multiple models on different 

subsets of data to identify reliable patterns that appear frequently in these models (see 

main text for more discussions). Procedure-wise, over-fitting is detected by building a 

model based on a subset of the examples (the training set), and evaluating its 

accuracy based on another subset not involved in training (the testing set). An 

over-fitted model would have good training accuracy but poor testing accuracy. The 

process is usually repeated with different portions of data treated as the training set in 

turn to compute the average accuracy in a cross-validation procedure. 

 

Setting variation 1: Binary classification, multi-class classification and regression 

When we have a pre-defined set of discrete values for the labels, we have a 

classification problem with each value corresponding to a class and f is called a 

classifier. The simplest case of which, when there are only two classes, is called a 

binary classification problem. A more complex example of classification is to 

distinguish enhancers (yi=1) from promoters (yi=2) and other regions (yi=0). There are 

also situations in which the labels can take on continuous values. The corresponding 

machine learning problem is called a regression problem and f is called an estimator 

or a regressor. In this review we focus on classification problems as the goal of 

genome annotation is to identify DNA sequences belonging to each element class. 

However, it should be noted that in practice many classifiers output a continuous 

value fj(xi) that indicates how much a region xi appears to belong to the class j. For 

instance, probabilistic methods formally define fj(xi) as the data likelihood Pr(xi|yi=j) 

or posterior probability Pr(yi=j|xi). Classification can be performed by assigning each 

region xi to the class j with the largest value of fj(xi) among all classes. 

 

Setting variation 2: Supervised, unsupervised and semi-supervised learning 

In the basic setting, the model is constructed from observed examples with known 

labels, which is called the supervised learning setting (Figure 2a). Sometimes we do 

not predefine a set of classes, but want to identify natural clusters of genomic regions 

according to their distribution of feature values alone. This is called the unsupervised 

learning problem (Figure 2b). For example, in addition to enhancers and promoters, 
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there are also other types of regulatory elements such as silencers and insulators. One 

may not want to predefine the set of regulatory element classes but rather to discover 

them from the observed data, assuming that the instances of each class share similar 

feature values. There are also situations in which we want to determine the model 

from both data with and without labels. This semi-supervised learning setting [36] 

could be very useful when training examples are limited or are available only for 

some classes. For example, if there are few experimentally validated enhancers and 

high-confidence negative examples, one may want to first use the available examples 

to roughly define the area in the feature space that belongs to each class, and then use 

the distribution of feature values of unlabeled genomic regions to estimate the 

boundaries of the areas (Figure 2c). 

 

 

Figure 2. Supervised, unsupervised and semi-supervised learning. (a) In supervised learning, the model 

(blue line) is learned based on the positive and negative training examples, and the genomic region 

without a known class label (purple circle) is classified as positive according to the model. (b) In 

unsupervised learning, all examples are unlabeled, and they are grouped according to the data 

distribution. (c) In semi-supervised learning, information of both labeled and unlabeled examples is 

used to learn the parameters of the model. In this illustration, a purely-supervised model (dashed blue 

line) classifies the purple object as negative, while a semi-supervised model that avoids cutting at 

regions with a high density of genomic regions (solid blue line) classifies it as positive. 

 

Setting variation 3: Instances with independent vs. dependent labels 

We have been implicitly assuming that the label of each genomic region can be 

determined by its own set of features alone. In genome annotation, this is often 

unrealistic for two reasons. First, it is usually hard to define the exact span of a 

region. Biologically it could be fuzzy to define exactly where a functional element 

starts and ends (as in the case of an enhancer), and even if the span could be formally 

defined (as in the case of an RNA transcript), it is usually not known prior to machine 

learning. One may therefore consider each base separately and predict whether it 

overlaps a functional element or not. Second, the class labels for neighboring genomic 
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regions/bases are not independent. For example, if a base is within an intron, the next 

base should be either within an intron or a splice site. In this situation, the label of a 

base should be predicted according its own features as well as other bases. There are 

standard methods for this kind of learning tasks, such as hidden Markov models. 

 

 

Key properties of machine learning and their relevance to genome 

annotation 

 

From expert knowledge to data-driven patterns 

One major reason for the popularity of machine learning methods is its ability to 

automatically identify patterns in data. This is particularly important when the expert 

knowledge is incomplete or inaccurate, when the amount of available data is too large 

to be handled manually, or when there are exceptions to the general cases. We use 

protein binding motifs as an example for this part of discussion. 

 

Many DNA binding proteins, including transcription factors (TFs), recognize their 

target DNA regions by some short sequence motifs [37]. The motifs are usually not 

exact, in that a TF can bind DNA sequences with some differences, albeit with 

different affinity. When the number of experimentally known binding sites of each TF 

was limited, it was common for human experts to abstract the binding motifs by some 

prominent features common to the observed binding sites, such as the most conserved 

locations within the motifs. The resulting expert knowledge was summarized by 

simple representations such as consensus sequences. 

 

As high-throughput methods for probing TF binding sites, such as protein binding 

microarrays [38] and chromatin immunoprecipitation followed by microarrays 

(ChIP-chip) [39, 40] or high-throughput sequencing (ChIP-seq) [27, 28] became 

popular, it has become easier to collect a large number of sequences that contain 

binding sites of a TF. Machine learning methods can automatically identify patterns 

common in these sequences but rare in the genomic background [22]. Due to the large 

amount of examples available, the resulting models can have richer probabilistic 

representations with more parameters than what a human expert can easily handle, 

such as position weight matrices [41] and profile hidden Markov models [42]. 

 

In many cases, the exact binding locations of the TF in the input sequences are 

unknown. One needs to try different combinations of binding locations on these 

sequences and compare the resulting models. This computationally expensive task can 
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be handled by standard methods such as Gibbs sampling [43] and expectation 

maximization [44]. There could also be errors in the input data such as false positives, 

i.e., sequences that do not really contain a binding site of the TF. A human expert 

could be misled by the false positives and try to form over-fitted models (box 1) that 

fit these error cases. A machine learning method with well-controlled complexity, on 

the other hand, may prefer a model that does not classify the error cases as positives. 

More generally, each input sequence may contain zero, one, or more occurrences of a 

motif [45], the input sequences may contain multiple motifs (for example due to 

indirect binding [46]), and motif finding can be confounded by repeat sequences. All 

these complications are more easily handled by automatic methods. 

 

From single data type to integration of heterogeneous data 

Machine learning methods are also good at integrating multiple, heterogeneous 

features. This property allows the methods to detect subtle interactions and 

redundancies among features, as well as to average out random noise and errors in 

individual features. We use the identification of cis-regulatory modules (CRMs) as an 

example to illustrate this property. 

 

A CRM is a DNA regulatory region, usually containing the binding sites of multiple 

TFs, that regulate a common gene nearby [47], such as cis-acting promoters, 

enhancers, silencers and insulators. Many types of features have been individually 

used by previous methods to identify CRMs, including the density and statistical 

over-representation of TF binding motifs, evolutionary conservation, direct binding 

signals from ChIP-seq or ChIP-chip data, and biochemical marks such as histone 

modifications [26]. In general, information related to binding patterns is useful for 

distinguishing between CRMs and genomic regions with fewer binding sites such as 

exons; Information related to evolutionary constraints is more useful in distinguishing 

between CRMs and other less conserved regions, such as introns and some intergenic 

regions; Information about histone modifications is useful in distinguishing between 

different types of regulatory regions and between the active and inactive ones. It was 

found that no single type of features could perfectly separate CRMs from negative 

examples [26]. As a result, some recent approaches have started to integrate different 

types of features by using a machine learning framework [48]. Depending on the 

mathematical form of the model (box 1), the different features can be integrated in 

ways from linear combinations to highly nonlinear ones. 

 

Three aspects of data integration by machine learning deserve more discussions. First, 

the input features could contain redundant information. For example, ChIP-seq signals 
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from TF binding and histone modification experiments can be highly correlated with 

open chromatin signals [49]. Different machine learning methods handle redundant 

features in drastically different ways. At one extreme, methods such as the Naïve 

Bayes classifier [50] assume input features to be independent with each other for each 

class. If the features are in fact not conditionally independent, the redundant features 

could be unfavorably granted stronger influence on the predictions than the 

non-redundant ones, which affect the accuracy of the resulting models for some 

problems. On the other hand, methods such as decision trees and logistic regression 

could have one feature masking out the effects of all other similar features. In general 

it is good to carefully select a set of non-redundant input features based on biological 

knowledge, perform dimension reduction to remove dependency between features (by 

methods such as principal components analysis [51]) before the learning process, or 

test the stability of predictions using different subsets of input features. 

 

Second, if a large number of features are integrated but the amount of training 

examples is limited -- a phenomenon quite common in genome annotation, multiple 

issues could come up. The training examples may not be sufficient to capture the 

combination of feature values characteristic of the classes to be modeled. If some 

features irrelevant to the target concepts are included, they could mislead the 

modeling process, especially in unsupervised settings. There is also a high risk of 

over-fitting. Feature selection, dimension reduction, regularization and 

semi-supervised learning (box 1) are all practical ways to alleviate the problem. 

 

Third, it could be difficult to combine features of different data types. For example, 

conservation of a potential CRM region is represented by a numeric score (such as 

PhastCons [52] and phyloP [53]), the raw sequence of it is represented by a text string, 

while peaks of binding signals of a particular TF could be represented by a binary 

variable. One systematic approach to handling mixed data types is to turn each type of 

data into a numerical similarity matrix between the input regions before integrating 

them. Kernel methods [54] are one particular branch of machine learning methods 

that work on similarity (kernel) matrices with some simple mathematical requirements. 

They have been widely used in integrating different types of data for genome 

annotation. For example, the kernel between two sequences can be defined by their 

alignment, BLAST scores, or k-mer composition [54, 55]. 

 

From simple rules to complex functions 

Another strength of machine learning is its ability to construct highly complex models 

needed by some genomic element classes. We use gene finding as an example here. 
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Eukaryotic genes have a complex structure with exons, introns and splice sites at the 

transcriptional level, and coding sequences (CDSs) and untranslated regions (UTRs) 

at the translational level. An early computational approach to computational gene 

finding involves homology search using tools such as BLASTX [56] to look for 

regions of a genome with similar sequences in a database of annotated genes or 

expressed sequence tags. This approach is similar to the standard machine learning 

method of predicting the label of an object as the one of its nearest neighbor among 

the labeled examples, but with a maximum dissimilarity cutoff between them. It 

suffers from not being able to identify genes with no annotated homologs, and not 

reporting the detailed sub-elements (exons, introns, etc.) of the genes. 

 

Both issues suggest the need for ab initio methods for finding genes directly from 

sequences. Some of these methods derived sequence-based features of known genes 

called content statistics (such as codon usage), and defined rules for classifying genes 

based on these features [11]. It was found that when the features were combined using 

non-linear artificial neural network classifiers, the prediction performance was much 

better than some simple combinations of the features [57], which highlights the need 

for complex models. 

 

In order to model the detailed structures of eukaryotic genes instead of simply 

predicting if a region contains a gene or not, machine learning methods based on 

hidden Markov models [58-60] and generalized hidden Markov models [61-63] have 

later become some of the most popular choices for computational gene finding. These 

methods consider the observed genomic sequence as the output of some hidden states 

(the sub-element types or their sub-classes). A complete model is composed of the set 

of states, and the probabilities of starting a sequence at each state, transition between 

states and outputting a base/sequence at each state as model parameters. Standard 

algorithms exist for learning the parameter values of such complex models. 

 

With the advent of RNA-seq [64, 65] and other high-throughput experimental 

methods for identifying RNA transcripts, ab initio gene finding has become less 

popular. In the current post-transcriptomic era, machine learning has taken on some 

new roles in gene finding. First, specialized methods that take into account a large 

number of features and their complex interactions have been designed to model some 

biological mechanisms not yet fully understood, such as recognizing transcription 

start sites and determining the splicing events [66-68]. A related problem is to predict 

complete isoforms and their relative abundance of a gene in a certain sample, using 
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single-end or paired-end short sequencing reads [69]. Second, methods developed for 

identifying protein coding genes are now adopted to identifying long non-coding 

RNAs [67], which share some common features with protein coding genes (such as 

the presence of introns) but the annotations of which are much less complete and thus 

there are limited training examples available. 

 

 

Case study: Multi-class whole-genome annotation 

An ultimate goal of genome annotation is to identify all types of functional elements 

and all their occurrences in a genome. How far are we from this goal? Currently there 

are still likely undiscovered genomic element classes given the rapid discovery of new 

classes (such as many non-coding RNAs) in recent years. Some element classes also 

have so far very few discovered instances. In terms of machine learning, these two 

facts imply that currently it is impossible to perform purely supervised learning for all 

element classes. As a result, in a recent work by the Encyclopedia of DNA Elements 

(ENCODE) Project Consortium, which aims at delineating all functional elements 

encoded in the human genome [70], several different approaches have been adopted to 

confront with this grand challenge. 

 

ENCODE has recently produced about 1,600 sets of whole-genome experimental data 

that cover many types of molecular states and activities, including transcription, 

long-range DNA interactions and chromatin features such as histone modifications, 

protein-DNA binding, and open chromatin signals [6]. In one approach to 

whole-genome annotation, the experimental data were used to perform unsupervised 

segmentation of the human genome [6, 71, 72], so that each genomic location was 

assigned to a segment. The segments were then grouped into clusters in an 

unsupervised manner. Each resulting cluster was described by the characteristic 

features of its members. Surprisingly, although the clusters were discovered by an 

unsupervised procedure, many of them have simple interpretations corresponding to 

known genomic element classes such as promoters, transcribed regions and enhancers. 

The segmentation was also able to provide sub-classes of particular element classes, 

such as enhancers with strong and weak activities in particular cell types, respectively. 

In general, this method can reveal groups of sequence elements according to the 

observed data alone without defining the target element classes a priori. 

 

One difficulty in performing this unsupervised clustering was to determine the 

number of clusters to produce. Having too few clusters would merge elements from 

different genomic element classes together, while having too many clusters would 
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make the results difficult to interpret. In order to avoid manually defining the number 

of clusters, in another approach the segments were put onto a two-dimensional 

toroidal map, where similar segments were put close to each other using the 

unsupervised Self-Organizing Map (SOM) method [73]. The resulting map provides a 

way to study the relationships between different segments and the meanings of each 

local region on the map without defining the number of clusters and the cluster 

boundaries [6]. It also provides information about the similarity between different 

clusters identified by the segmentation method. 

 

The whole-genome segmentation approach has the advantage of requiring no a priori 

definition of element classes, so that the discovery process is directly based on the 

observed data. On the other hand, when there is a specific type of genomic elements 

of interest, customized methods for it could potentially include more information 

specific to it. As an example, one important effort of ENCODE was to experimentally 

validate computationally predicted enhancers using different types of reporter assays 

[6]. A number of methods had previously been proposed for identifying enhancers in a 

genome, including both supervised [74, 75] and unsupervised [76, 77] methods. These 

methods were constrained by a lack of whole-genome experimental data, and had thus 

relied on either a relatively small set of experimental features or static information 

such as genomic sequence and evolutionary conservation. Correspondingly, a 

specialized pipeline was designed by ENCODE to identify enhancers at the genome 

scale, utilizing the large amount of experimental data produced [6, 78]. Both the 

predictions from the segmentation approach and the enhancer prediction pipeline were 

found to achieve reasonable levels of accuracy [6]. 

 

Based on the ENCODE experience, one could imagine a potential hybrid approach 

that combines the benefits of both the unsupervised and supervised approaches 

described above. First, the segmentation approach is applied to systematically 

discover genomic element classes from large datasets. Specialized supervised 

methods can then be designed to provide detailed modeling of each element class 

using extra domain knowledge and auxiliary data available. 

 

 

Current challenges and future outlooks 

 

We conclude by discussing some current challenges in applying machine learning to 

genome annotation and the corresponding outstanding key research problems. 
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Interpretability of models 

As mentioned above, for some difficult genome annotation tasks, very complex 

models have been proposed. For example, a machine learning method involving 

hundreds of features has been reported to achieve high accuracy in predicting 

tissue-specific alternative splicing [66]. There are also machine learning methods that 

make use of the concept of ensemble learning, which combines the predictions of 

multiple (possibly very complex) models to achieve better performance. Examples 

include the classical bagging [79] and boosting [80] methods, and Random Forests 

[33], which build multiple models using different subsets of examples or features. For 

instance, Random Forests were reported to outperform some other machine methods 

in identifying non-coding RNAs [81]. In fact, ensemble methods have become a 

popular choice in public machine learning challenges that involve big datasets, such 

as the well-known Netflix Prize [82]. They outperformed methods that produced 

simpler models, which were unable to provide the required 10% accuracy 

improvement in recommending films as compared to the original method used by 

Netflix. 

 

These complex models, achieving high prediction accuracy notwithstanding, are in 

general difficult to interpret. Whether one should use them in genome annotation 

depends on the exact goal of the project. If the goal is to produce a list of genomic 

elements as accurately as possible, it would be fine to use complex models as “black 

boxes” as long as they can provide the required accuracy. On the other hand, if the 

goal is to use machine learning as a means to understand the underlying biological 

mechanisms, one may want to construct models that are more easily interpretable. For 

example, if one hopes to understand the major features that can help identify 80% of 

the elements of a certain class, a simple model may suffice, sacrificing the prediction 

accuracy of the remaining 20% as a tradeoff. It is rarely possible to achieve high 

accuracy and good interpretability at the same time, thus it is important to define the 

goal clearly and select the machine learning method accordingly. 

 

Context specificity and transferability of models 

Large-scale genomic projects, such as ENCODE [6], modENCODE [83, 84], 1000 

Genomes [85] and Roadmap Epigenomics [86], have produced a huge amount of 

valuable data that cover many aspects of genomes. These datasets offer an 

unprecedented opportunity to model genomic element classes and the effects of 

genetic mutations on them. However, a lot of these data are associated with properties 

specific to the corresponding experiments, such as cell or tissue types, experimental 

conditions, developmental stages of the animals and the population backgrounds of 
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the sequenced individuals. Care should be taken when using these data to model the 

active genomic elements in other types of data or to construct general, 

non-context-dependent models. 

 

It would be useful for machine learning methods to provide multiple levels of 

abstractions for the static and context-specific information. For example, when direct 

binding data of a certain TF X from ChIP-seq experiments are available for one cell 

type, a model can be constructed to describe the relationships between the ChIP-seq 

signals and the actual binding sites of TF X in this cell type. However, if in a second 

cell type ChIP-seq experiments have only been performed for some other TFs but not 

TF X, the model from the first cell type cannot be directly applied to predict the 

binding sites of TF X in this second cell type as the feature required by the model is 

not available. In this situation, the ChIP-seq data for the TFs available in the second 

cell type could be used to construct a higher-level model that describes some features 

common to the binding sites of different TFs, such as DNA accessibility. Combining it 

with non-context-specific static information such as sequence motifs of TF X, it is 

still possible to construct an accurate model for predicting the binding sites of TF X 

without ChIP-seq data in the second cell type [87]. 

 

A key to providing different levels of abstraction from the same input data is a careful 

selection of negative examples. In the above example, when constructing the general 

model for identifying binding sites of any TF, the negative set should contain regions 

not bound by any TF, including those with no direct ChIP-seq signals and those likely 

to be depleted of TF binding such as coding exons. In contrast, when constructing the 

model for identifying binding sites of a particular target TF based on ChIP-seq data 

alone, the negative examples should also include binding sites of other TFs in addition 

to non-TF-biding regions, so that the learned model is specific to the target TF. 

 

Lack of training examples and unbalanced positive and negative sets 

For some classes of genomic elements, there are insufficient known examples for 

supervised machine learning methods to capture the general patterns of the classes. 

For example, there are few validated enhancers cataloged in databases relative to the 

expected total number [88]. Many prediction methods have thus relied on a 

combination of unsupervised learning and manually-defined rules [6, 76-78]. In the 

case of non-coding RNAs, a large portion of the most functionally characterized ones 

are the short, strongly-structured RNAs, which could bias models for identifying 

ncRNAs towards this subset and render them less able to detect ncRNAs with few 

known examples and novel ncRNA classes. Moreover, confirmed negative examples 



15 

are seldom available, but are crucial to most machine learning methods. A related 

issue is that most genomic element classes occupy only a small portion of the genome, 

and therefore the ratio of positive to negative regions is very small. Even a highly 

accurate classifier could have a lot of false positives among its top predictions. 

 

We propose that these issues should be tackled from multiple fronts. First, as 

explained in Box 1, the concept of semi-supervised learning [36] is potentially 

capable of combining information about the distributions of known examples and 

unlabeled data points (Figure 1c). Its application to genomic annotation deserves more 

investigations. 

 

Second, systematic methods for selecting negative examples for genomic annotation 

should be developed, taking into account the accuracy of the examples and their 

influence on the models. For instance, extreme cases that are “very negative” are 

likely accurate but not too informative. Relevant discussions for the problem of 

predicting protein physical interactions provide some good references on this topic 

[89-91]. There is a relatively small set of verified protein physical interactions, a large 

number of putative interactions from high-throughput experiments such as 

yeast-two-hybrid and co-immunoprecipitation, and no protein pairs that are confirmed 

to never interact. The way to choose negative examples could have profound effects 

on the resulting models. 

 

When confirmed negative examples are scarce or unavailable, certain features 

indicative of the class label could be intentionally left-out from the model training 

process and used to evaluate the performance of the model learned from the other 

features. For example, in a recent study for identifying long non-coding RNAs 

(lncRNAs), information useful for predicting protein-coding genes, including 

sequence conservation, homology to known genes, codon usage and coding potential, 

was not used in the lncRNA detection pipeline [92]. An a posteriori check of the 

coding potential of the predicted lncRNAs could serve as an indirect evidence of the 

prediction accuracy. 

 

Third, when constructing a model for a particular genomic element class, it is 

generally good to test for the existence of sub-classes, by means of either a model that 

allows for multiple clusters per class, pre-clustering of training examples and 

construct separate models for different clusters, or post-clustering of predictions. 

 

Finally, if experimental validations are performed to confirm the computational 
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predictions, an active learning [93] strategy can be adopted to select predictions that 

maximize the expected information gain or similar measures [94]. Ideally the 

computational prediction and experimental validation phases should be repeated for 

multiple iterations, to facilitate the selection of most informative examples for 

validation. 
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